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Abstract 

This paper examines the effect of temperature on emergency department (ED) visits using 

administrative data covering 50% of the Hungarian population and 3.52 million ED visits from 

2009 to 2017. The results show that ED visit rates increase when average temperatures exceed 

10°C, primarily driven by mild cases that do not result in hospitalization. Higher humidity 

amplifies the heat effect, which is also stronger following consecutive hot days. The findings 

further indicate that the impacts of climate change – both present and future – are substantial. 

Between 2009 and 2017, 0.66% of the ED visits were attributed to temperature changes relative 

to the period 1950–1989. Furthermore, by the 2050s, compared to the first 15 years of the 21st 

century, the annual ED visit rate is projected to rise by 1.24%–1.70%, depending on the climate 

scenario. A heterogeneity analysis reveals that the effects of high temperatures and the future 

impacts of climate change are disproportionately greater in lower-income districts, areas with 

lower general practitioner density, and among younger adults. 
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1. Introduction 

Over the past couple of decades, a substantial body of literature has been produced on the impact 

of climate change on human health. However, most of the research has focused on mortality 

(Barreca et al., 2016; Barreca, 2012; Carleton et al., 2022; Cohen and Dechezleprêtre, 2022; 

Conte Keivabu et al., 2024; Deschênes and Greenstone, 2011; Deschênes and Moretti, 2009; 

Hanlon et al., 2021; Heutel et al., 2021; Otrachshenko et al., 2018, 2017), while our knowledge 

regarding morbidity is considerably more limited. The studies that have focused on morbidity 

in general have mostly examined either hospital admissions (Agarwal et al., 2021; Karlsson and 

Ziebarth, 2018; Masiero et al., 2022; Rizmie et al., 2022) or emergency department (ED) visits 

(Gibney et al., 2023; Gould et al., 2024; Mullins and White, 2019; Sun et al., 2021; White, 

2017), with a few exceptions that have studied other indicators, for example primary health care 

visits (Fritz, 2022). Regarding mortality, existing studies broadly agree that both extreme cold 

and extreme heat increases the risk of death (although the effects on cause-specific mortality 

rates may differ). However, in terms of morbidity, the findings are mixed: some papers reported 

a linear relationship (the higher the temperature, the larger the morbidity) (Fritz, 2022; Gould 

et al., 2024; Mullins and White, 2019), while others found rather a tilted J- or U-shaped pattern 

(Agarwal et al., 2021; Gibney et al., 2023; Karlsson and Ziebarth, 2018; White, 2017).  

Although the existing literature provides some evidence on the effect of temperature on 

morbidity, it rarely addresses how these findings can be "translated" into the impacts of climate 

change. The literature offers little insight into what changes can be expected in the future as a 

result of a warming climate or how the warming experienced to date has already affected 

morbidity. It is particularly important to note that the morbidity impacts that have already 

occurred are largely overlooked, even though climate change is not only a future concern but is 

already happening (Dessler, 2022; Sippel et al., 2020). Furthermore, even among the papers 

that have made future projections, many rely on a single climate model (Agarwal et al., 2021; 

Fritz, 2022; White, 2017). This approach, however, fails to account for climate uncertainty, and 

may consequently provide misleading inputs for decision-makers (Burke et al., 2015). A 

notable exception is the paper by Gould et al. (2024), which uses data from 33 global climate 

model simulations to project future morbidity burdens of climate change. 

It is important to note that many questions remain unanswered about the heterogeneity 

of the temperature effects and the impacts of climate change. While several studies have 

examined differences in temperature effects by gender and age, other important dimensions are 

missing from the existing literature. For instance, how do these effects vary by income level? 

How does the availability and quality of primary health care shape the relationship between 
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temperature and morbidity? Furthermore, no studies have quantified the heterogeneity of 

climate change impacts across different societal subgroups. 

In this paper, I use Hungarian administrative data on 3.52 million emergency department 

visits in outpatient care between 2009 and 2017, high-resolution meteorological data, and 

temperature projections from thirty-one climate models to study the effect of temperature on 

ED visits, and to project the impacts of climate change. 

As an East-Central European country, Hungary lies at the intersection of different 

climatic zones, with its climate influenced by both continental and oceanic patterns (Mezősi, 

2017). Summers are typically hot, while winters are cold. Despite its small size, Hungary 

exhibits non-negligible spatial variation in temperature and precipitation. 

From a European perspective, Hungary ranks among the poorest in terms of population 

health, with a low number of doctors and nurses per capita and below-average health spending 

as a share of GDP (Jagger et al., 2008; OECD/European Commission, 2024; Olsen and Dahl, 

2007; Welsh et al., 2021). Hungarians not only have a shorter life expectancy than most 

Europeans but also spend a larger proportion of their lives in poor health. This health 

disadvantage may make them more vulnerable to heat-related illnesses and diseases. 

Hungary has a tax-funded universal healthcare system, almost all individuals are 

covered by compulsory health insurance, and, as a general rule, medical care is free of charge. 

Emergency departments are typically accessible 24 hours a day for patients with serious, life-

threatening conditions, acute pain, and urgent medical needs. Patients may be transported by 

the National Ambulance Service, referred by a general practitioner (GP), or may walk in 

without a referral. In the event of a high patient volume, patients arriving with non-serious, mild 

symptoms may be required to wait for treatment. Alternatively, they may be referred to a 

primary care clinic or their GP following a triage assessment. Following the completion of the 

necessary medical examinations, tests, and treatment, patients may be referred to a hospital 

ward or another healthcare facility for the necessary specialist care, or they may be discharged 

to their homes. 

This paper employs a flexible approach that avoids imposing restrictive functional 

forms, allowing for the exploration of a nonlinear relationship between temperature and ED 

visits. Using daily data, eight temperature categories are defined to represent different daily 

mean temperatures from below −5°C to above 25°C. The effect of daily mean temperature is 

estimated on the ED visit rate for the day of exposure and the subsequent 10 days. The baseline 

specification includes controls for precipitation, humidity, day-of-year and day-of-week 

indicators, as well as district-by-year-by-month fixed effects. The inclusion of district-by-year-
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by-month fixed effects ensures that effects of temperature are identified from the variation in 

daily temperatures within a given district and a given month.  

I find that a day with an average temperature above 25°C increases the ED visit rate by 

4.65 additional ED visits per 100,000 people on the day of exposure and the subsequent 10 

days, relative to a daily mean temperature of 5-10°C. This means that the total number of ED 

visits over an 11-day period is increased by 1.60% following a hot (>25°C) day. The effect of 

a slightly less hot day (with an average temperature between 20-25°C) is 1.09%, while the 

effects of days with average temperatures between 15-20°C and 10-15°C are 0.54% and 0.31%, 

respectively. These effects are primarily driven by mild cases not resulting in hospitalization. 

Colder temperature categories below 5-10°C have no significant effects. 

This paper also examines the moderating effect of humidity on heat-related ED visits. 

As higher humidity impairs the human body's ability to cool through sweating, it is important 

to explore the role of humidity to better understand the potential effects of heat stress. I find 

that the effect of a day with an average temperature above 25°C on the ED visit rate under high 

humidity conditions is 5.61 ED visits per 100,000 people (a 1.93% increase in relative terms). 

By comparison, under low humidity conditions, the effect is smaller, with an increase of 4.04 

ED visits per 100,000 persons (an increase of 1.39%). 

Additionally, this study also explores the effect of heatwaves (prolonged periods of 

extreme heat) on ED visits. Climate change is projected to lead to more frequent and longer-

lasting heatwaves (Perkins-Kirkpatrick and Lewis, 2020; Rousi et al., 2022; Russo et al., 2017), 

and there is growing evidence that heatwaves has strong effects on various outcomes, including 

economic growth, mortality, sleep or fertility (Hajdu, 2024a, 2024b; Miller et al., 2021; 

Otrachshenko et al., 2018). I also find that the effect of prolonged heat stress is stronger. The 

cumulative effect of a day with an average temperature of >25°C when it is preceded by at least 

four other >25°C days is 5.91 ED visits per 100,000 people (a 2.03% increase), while the effect 

of a >25°C day that is not preceded by at least four other hot days is 4.38 ED visits per 100,000 

people (a 1.50% increase). 

Based on the temperature changes observed between 1950–1989 and 2009–2017, I 

estimate that a total of 46,800 excess ED visits occurred between 2009 and 2017, representing 

0.66% of all ED visits during this period. This reflects the burden of climate change already 

being experienced. Furthermore, I also estimate the impact of future warming. Using results 

from thirty-one climate models, I project a 1.24% increase in the annual ED visit rate under the 

SSP2-4.5 climate scenario (a "middle-of-the-road" scenario) and a 1.70% increase under the 

SSP5-8.5 scenario (a worst-case scenario) by the 2050s. 
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Beyond these average effects, this study reveals substantial heterogeneity. Higher 

temperatures have stronger effects on individuals residing in districts with lower income levels. 

Consequently, the projected impact of climate change is 30-35% higher in low-income districts 

than among individuals living in middle-income or higher-income districts.  

The quality and availability of primary health care, measured by the density of general 

practitioners, also shapes the relationship between temperature and ED visits. In districts with 

high GP density, heat-induced increases in ED visits are smaller than in areas with low GP 

density. As a result, the projected impacts of climate change are 35–50% greater in low GP 

density districts. 

The largest differences are observed between age groups. An important finding is that 

the effects of hot temperatures decrease considerably with advancing age, and these differences 

are reflected in the markedly different impacts of climate change. The projected impact on ED 

visits is over four times higher for the 18-44 age group than for those 65 years and older, and 

more than one and a half times higher than for the 45-64 age group. 

This study makes several important contributions to the literature. First, it analyzes the 

effects of temperature on morbidity in an East-Central European country, a region previously 

underrepresented in research. Most of the existing studies have focused on the USA (Gould et 

al., 2024; Mullins and White, 2019; Sun et al., 2021; White, 2017) or Western European 

countries (Gibney et al., 2023; Karlsson and Ziebarth, 2018; Masiero et al., 2022; Rizmie et al., 

2022), with limited research available for other regions, aside from a few exceptions like 

Indonesia (Fritz, 2022) or China (Agarwal et al., 2021). Second, this paper provides projections 

of the impact of climate change, incorporating both climate uncertainty and the uncertainty in 

the relationship between temperature and morbidity – aspects often overlooked in prior studies. 

I also show that the impacts of climate change are not only a distant concern but are already 

influencing our lives today, with a measurable impact on ED visits from 2009 to 2017. Third, 

this paper explores the heterogeneity in the temperature effects and the future impacts of climate 

change, an important consideration for designing effective public policies. While many 

previous studies have focused on understanding age- and sex-specific heterogeneity in the 

effects of different temperatures (e.g., extreme cold or hot), this study goes a step further by 

summarizing these temperature effects into a single measure – the impact of climate change – 

to illustrate how different societal groups will be affected by a warming climate. In examining 

heterogeneity, I also focus on dimensions that have not yet been addressed in the literature. 

Fourth, I examine how humidity moderates the effect of heat and how prolonged exposure to 
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heat intensifies the effects on morbidity; two important aspects that have received little attention 

from the previous papers. 

2. Data 

2.1. ED visits 

The empirical analysis utilized an individual-level administrative panel database from the 

Databank of the HUN-REN Centre for Economic and Regional Studies, which covers a 

randomly selected 50% of the Hungarian population in 2003 (Sebők, 2021). The database spans 

from 2003 to 2017, but the analysis was restricted to the period between 2009 and 2017 due to 

the unavailability of health-related data before 2009. The dataset includes detailed records for 

all outpatient care visits, categorized by type of care provided, enabling the identification of 

emergency department (ED) visits. For each visit, key patient characteristics (age, sex, and 

district of residence) and the ICD-10 code of the principal diagnosis were recorded. This 

allowed for the calculation of daily ED visit rates by district of residence (number of ED visits 

per 100,000 persons), as well as age-, sex-, and diagnosis-specific rates. In addition, inpatient 

care data enabled a distinction between severe and mild ED cases. Severe cases were defined 

as ED visits followed by a hospital stay on the same day or the next, while mild cases were 

those not followed by immediate hospitalization.1 

The sample was restricted to individuals aged 18 and over. The final dataset comprised 

647,539 observations (197 districts multiplied by 3,287 days). 

Fig. 1 provides a summary of the ED visits data. A total of 3.52 million ED visits were 

observed between the years 2009 and 2017.2 Over these nine years in Hungary, the mean 

number of daily ED visits per 100,000 persons increased from approximately 20 to over 30.3 

The district-level averages for the period 2009-2017 demonstrate considerable spatial 

heterogeneity, with the lowest values below 10 ED visits per day per 100,000 persons and the 

highest values above 50. Injuries (including poisoning, and certain other external causes) 

accounted for approximately 32% of visits, while diseases of the circulatory, digestive, and 

respiratory systems represented 13%, 12%, and 8%, respectively. The remaining diagnostic 

 
1 For 1 January 2009 and 31 December 2017, the severity of the ED visits cannot be defined. In the former case, 

new hospital stays cannot be identified due to the lack of data for 2008. In the latter case, due to the lack of data 

for 1 January 2018, the hospital stays for the day following the ED visit are not known. 
2 Note that this represents only half of all the ED visits in outpatient care in Hungary, as the data covers 50% of 

the population. 
3 The increase is probably partly due to the opening of new EDs in several locations during this period with EU 

funding. The increasing number of GP vacancies (Papp et al., 2019) may also have contributed to the increase in 

ED visits. However, during the same period, the number of ED visits increased significantly not only in Hungary 

but also in California, for example (Gould et al., 2024).  
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categories each accounted for 5-6% or less. Table 1 also reveals that approximately 18% of the 

ED visits are followed by hospitalization (severe cases).4 

 

 

 

Fig. 1. Temporal trend, geographic variability, and disease type distribution of daily ED 

visit rates 

Notes: (A) Country-level averages of daily ED visit rates by month. The country-level values are calculated as the 

weighted average of the district-level values. The average number of populations over the years 2009-2017 is used 

as each district's weight. (B) Average daily ED visit rates from 2009–2017. (C) Distribution of ED visits by 

diagnosis (defined by ICD-10 codes). Neoplasms: C00-97, D00-48, Infectious and parasitic: A00-99, B00-99, Skin 

and subcutaneous tissue: L00-99, R20-23, Nervous system: G00-99, R25-29, Endocrine: E00-90, Genitourinary: 

N00-99, R30-39, General symptoms: R50-69, Mental, behavioral: F00-99, R40-49, Musculoskeletal: M00-99, 

Respiratory: J00-99, R05-09, Digestive: K00-93, R10-19, Circulatory: I00-99, R00-04, Injury: S00-99, T00-98, 

Other: D50-89, H00-95, O00-99, P00-96, Q00-99, R70-99, V00-99, W00-95, X00-99, Y00-98, Z00-99, U00-99. 

 

2.2. Weather 

The meteorological data were derived from the European Climate Assessment & Dataset 

project (Cornes et al., 2018). The E–OBS 30.0e dataset (The ECA&D Project Team, 2024) 

provides information on the daily mean, minimum and maximum temperatures, relative 

humidity, and precipitation from 1950. The data are provided at a spacing of 0.1° × 0.1° in 

 
4 Table A1 (Supplementary Materials) shows the ED visit rates by age, sex, and the districts’ income level. 
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regular latitude/longitude coordinates. The gridded weather data were aggregated to the district-

by-day level by averaging the weather observations from the four grid points closest to each of 

the 197 district seats. 

To estimate nonlinear temperature effects, eight temperature categories were 

constructed based on daily mean temperatures. These categories were as follows: ≤−5°C, −5–

0°C, 0–5°C, 5–10°C, 10–15°C, 15–20°C, 20–25°C, and >25°C. In the analysis sample, 4.3% 

of the days have an average temperature >25°C, while 2.7% have an average temperature 

≤−5°C (Table 1). However, there are some non-negligible variations in the annual number of 

days with an average temperature >25°C and ≤−5°C across different years and districts (Figure 

A1, Supplementary Materials). 

To gain further insight into the effects of heat stress, additional indicators for heatwave 

days and hot days with high and low humidity levels were created. Heatwave days were defined 

as those days with an average temperature >25°C that are preceded by at least four other >25°C 

days. Under this definition, non-heatwave hot days are those with an average temperature 

>25°C where the preceding four days were not all above 25°C days. High-humidity hot days 

were defined as days with relative humidity above 60% and an average temperature >25°C, 

while low-humidity hot days were defined as >25°C days with relative humidity below 60%. 

 

Table 1. Descriptive statistics  

Variable Mean SD Min Max N 

Daily ED visit rate 26.50 21.85 0.00 228.42 647,539 

Daily ED visit rate      

Severe cases 4.72 7.04 0.00 136.61 647,145 

Mild cases 21.78 19.16 0.00 204.81 647,145 

Daily mean temperature (°C)      

≤−5 0.027 0.163 0 1 647,539 

−5 to 0 0.088 0.283 0 1 647,539 

0 to 5 0.154 0.361 0 1 647,539 

5 to 10 0.176 0.381 0 1 647,539 

10 to 15 0.166 0.372 0 1 647,539 

15 to 20 0.196 0.397 0 1 647,539 

20 to 25 0.149 0.357 0 1 647,539 

>25 0.043 0.202 0 1 647,539 

>25°C days      

Heatwave day 0.010 0.098 0 1 647,539 

Non-heatwave day 0.033 0.179 0 1 647,539 

>25°C days      

High humidity 0.016 0.126 0 1 647,539 

Low humidity 0.027 0.161 0 1 647,539 
Notes: Population-weighted figures. Unit of observations: district-by-day. 
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2.3. District-level characteristics 

To analyze heterogeneity by income and an indicator of primary health care quality, district-

level average annual pre-tax income per capita and the number of general practitioners per 

100,000 inhabitants were merged to the dataset. Data on total pre-tax income, the number of 

GPs, and total population at the district level were drawn from the National Regional 

Development and Spatial Planning Information System (TEIR). These figures were used to 

calculate district-level average annual pre-tax income per inhabitant (in 2023 HUF) and GP 

density for the years 2009–2017. 

Three income categories were created based on population-weighted thresholds. The 

first category includes the poorest districts, comprising 25% of the population, where the 

average annual pre-tax income per capita ranged from 0.80 to 1.21 million HUF (in 2023 prices) 

during 2009–2017. The second category consists of the richest districts, also accounting for 

25% of the population, with incomes ranging from 1.76 to 2.69 million HUF. The third category 

represents middle-income districts, covering the remaining (middle) 50% of the population, 

with incomes between 1.22 and 1.75 million HUF. 

Similarly, to capture the quality of primary health care, districts were divided into three 

groups based on the average number of GPs per 100,000 inhabitants during 2009–2017. The 

first group represents districts with low GP density (ranging from 33.3 to 44.8 GPs per 100,000 

inhabitants) and includes 25% of the population. The second (medium density) group covers 

districts with 44.8 to 56.0 GPs per 100,000 inhabitants, comprising 50% of the population. The 

third group consists of districts with 56.0 to 86.8 GPs per 100,000 inhabitants, also accounting 

for 25% of the population. 

Figure A2 (Supplementary Materials) shows the geographical heterogeneity of income 

levels and the GP density. 

2.4. Climate change 

The projections regarding future temperatures were derived from the most recent release of the 

NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) database 

(Thrasher et al., 2022). This dataset provides projections of daily temperature and humidity for 

the period 2015-2100 and retrospectively simulated historical data for the period 1950-2014. 

The projections are based on output from Phase 6 of the Climate Model Intercomparison Project 

(CMIP6) and have a spatial resolution of 0.25° × 0.25°. In this analysis, projections from thirty-
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one climate models5 under two climate change scenarios (SSP2-4.5 and SSP5-8.5) were 

considered. The SSP2-4.5 scenario is often described as a "middle-of-the-road" scenario. It 

assumes the implementation of climate protection measures, although a decline in CO2 

emissions only occurs after the mid-21st century, and the increase in the CO2 concentration 

stops only in the last decades of the century (O’Neill et al., 2016). In contrast, the SSP5-8.5 

scenario represents a worst-case scenario, assuming high levels of greenhouse gas emissions 

and a fossil fuel-based development trajectory, with a sharply increasing CO2 concentration 

during the 21st century.  

To project the future impact of climate change, changes in the temperature distribution 

by climate model were calculated for 2050-2059 using 2000-2014 as a baseline period. In the 

first step, daily temperature data for Hungary were calculated by averaging the mean 

temperature for each day over the grid points within the borders of Hungary. Subsequently, the 

annual distribution of the eight temperature categories described above was determined for the 

2050s and compared to the temperature distribution of the baseline period: 

ΔTol
j
= Tol

j,2050−2059
− Tol

j,2000−2014
 (1) 

where o stands for the SSP scenario and l stands for the climate model. The variable T denotes 

the annual number of days when the daily mean temperature falls into temperature category j.  

The previously introduced E-OBS 30.0e dataset was also used to calculate the change 

in the temperature distribution between the periods of 1950–1989 and 2009–2017. This is the 

warming experienced to date that already affects of our life. First, the number of days falling 

into the eight temperature categories (≤−5°C, −5–0°C, …, >25°C) was calculated for each year 

between 2009 and 2017, and these distributions were compared with the average temperature 

distribution during the period 1950–1989:  

ΔTj,y = Tj,y − Tj,1950−1989 (2) 

where the variable T denotes the number of days per year in year y (2009, … , 2017) when the 

daily mean temperature falls into temperature category j.6 In this calculation, daily mean 

temperature for Hungary is determined by averaging the temperature at the grid points falling 

within the boundaries of the country. 

 
5 ACCESS-CM2, ACCESS-ESM1-5, CanESM5, CESM2, CESM2-WACCM, CMCC-CM2-SR5, CMCC-ESM2, 

CNRM-CM6-1, CNRM-ESM2-1, EC-Earth3, EC-Earth3-Veg-LR, FGOALS-g3, GFDL-CM4-gr1, GFDL-CM4-

gr2, GFDL-ESM4, GISS-E2-1-G, HadGEM3-GC31-LL, IITM-ESM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-

LR, KACE-1-0-G, MIROC6, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, NorESM2-

LM, NorESM2-MM, TaiESM1, UKESM1-0-LL. 
6 To deal with the effects of leap years, each temperature distribution has been converted to 365-day years. 
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Fig. 2 illustrates the observed and projected changes in the temperature distribution. 

Panel A presents the temperature distributions for the periods 1950–1989 and 2009–2017, based 

on the E-OBS 30.0e dataset, while Panel B shows the distributions for 2000–2014 and 2050–

2059, using the average projections from the 31 climates models in the NEX-GDDP-CMIP6 

database. (Detailed projections from each climate model are provided in Figure A3 of the 

Supplementary Materials.) The data indicate substantial warming in the recent decades. For 

instance, the number of days with a mean temperature >25°C increased from 4.07 per year in 

1950–1989 to 13.7 days in 2009–2017. The climate models project that this trend will intensify 

further in the coming decades.  

 

 

Fig. 2: Changes in temperature distributions: 1950–1989 vs. 2009–2017 and 2000–2014 vs. 

2050–2059 

Notes: Each distribution assumes a 365-day long year. (B) The averages of the 31 climate models are used.  

 

3. Methods 

3.1. The temperature-ED visit relationship 

The effect of temperatures on ED visit rates was derived by estimating the following equation: 

Mrt=∑ ∑ βb
j
Tr(t-b)
j10

b=0j + ∑ ∑ γb
kPr(t-b)

k10
b=0k + ∑ ∑ δ𝑙Hr(t−b)

l10
b=0l + ρrym+θmd+dowt + εrt (3) 

where M is the ED visit rate in district r at time t (year y, month m, day d). T stands for the 

temperature categories (≤−5°C, −5–0°C, 0–5°C, 5–10°C, 10–15°C, 15–20°C, 20–25°C, 

>25°C). In the analysis, the temperature category with a daily mean temperature of 5–10°C 

serves as the reference category. P denotes the amount of precipitation (0 mm, 0−2 mm, 2−5 

mm, 5−10 mm, over 10 mm), while H stands for the relative humidity (≤50%, 50–60%, 60–

70%, 70–80%, 80–90%, >90%). District-by-year-by-month fixed effects (ρ) account for 

unobserved location-by-time-specific factors that influence the ED visit rate. Time-invariant 
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seasonality and the effect of fixed-date holidays were captured by dummies for the day of the 

year (θ). Finally, dummy variables denoting the day of the week were also included to control 

for the weekly pattern of morbidity (dow).  

The coefficient βj represents the effect of a day when the daily mean temperature falls 

into temperature bin j on the ED visit rate (relative to a day with a mean temperature of 5–

10°C). To examine the temporal dynamics of the temperature-ED visit rate relationship, it is 

allowed that the ED visits rate at time t is influenced by both the contemporaneous weather 

(b=0) and weather in the previous 10 days (b = 1, …, 10). Furthermore, it is also important to 

note that the βb coefficients can be interpreted as the effects of temperature at time t on the ED 

visit rate after b days (Stock and Watson, 2015). This implies that the sum of the β coefficients 

(β0 + β1 + … + β10) represents the 11-day cumulative effect of temperature at time t, which is 

the focus of this paper. 

From a simplified perspective, this empirical specification derives the effect of 

temperature by comparing the ED visit rate on a day with a colder temperature in a given 

district, year, and month with the ED visit rate on another day with a warmer temperature in the 

same district, year, and month. This comparison is then repeated for ED visit rates on the 

subsequent days to obtain the effects of lagged temperatures. 

The regressions were weighted by the mean adult population of each district over the 

period 2009–2017, and standard errors were clustered at the district level. For the estimations, 

STATA package reghdfe was used (Correia, 2017). When examining heterogeneity, separate 

regressions were estimated for each group. 

3.2. The impacts of climate change 

To estimate the impact of climate change on ED visits by the 2050s, the sum of the temperature 

coefficients derived from Eq. (3) was multiplied by the projected temperature changes 

estimated by Eq. (1). The uncertainty in the relationship between temperatures and ED visits 

was accounted for by bootstrapping the β coefficient estimates (50 times, sampling with 

replacement). This means that a projection is calculated as follows: 

ΔMsol = ∑ ∑ βbs
j10

b=0 ΔTol
j

j  (4) 

where ∆M is the change in the ED visit rate due to climate change, s represents the bootstrap 

sample, o denotes the SSP scenario, and l stands for the climate model. A total of 1,550 potential 

projections were analyzed for each SSP scenario, encompassing both climate and regression 

uncertainty. The findings are presented in terms of changes relative to the annual ED visit rate 
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for the period between 2009 and 2017. In the analysis of heterogeneous effects, the 

corresponding age-, sex-, and income-specific temperature coefficients were employed. 

A similar method was used to estimate the impact of climate change on the number of 

ED visits for each year from 2009 to 2017: 

ΔM𝑦 = ∑ ∑ βb
j10

b=0 ΔTj,y
j  (5) 

where ∆M represents the change in the ED visit rate due to climate change in year y (2009, … 

, 2017). The temperature coefficients (β) were obtained from Eq. (3), while the temperature 

changes between 1950–1989 and 2009–2017 (∆T) were calculated using Eq. (2). The estimated 

impacts on the ED visit rate was then converted into the total number of visits, assuming a total 

population of 8.1 million adults in Hungary. 

4. Results 

4.1. The relationship between temperature and the ED visit rate 

The relationship between temperature and emergency department visits is summarized in Panel 

A of Fig. 3. The estimated cumulative coefficients are presented as percentage effects, 

calculated by dividing the sum of the temperature coefficients by the sample average of the 

total ED visit rates over 11 days (219.5). Thus, these values represent the percentage change in 

the number of ED visits for a given temperature on the exposure day and over the following 10 

days. 

Relative to a daily mean temperature of 5-10°C, the influence of colder temperatures on 

the ED visit rate on the day of exposure and the subsequent 10 days is not significant. However, 

higher temperatures do have a significant and non-negligible effect. The 11-day cumulative 

effect of a day with an average temperature above 25°C is 1.60%, roughly 4.65 additional ED 

visits per 100,000 persons. The cumulative effect of a day with an average temperature between 

20-25°C is slightly lower, with an estimated 1.09% (3.19 ED visits per 100,000 persons), while 

the effects of days with average temperatures between 15-20°C and 10-15°C are 0.54% (1.57 

ED visits per 100,000 people) and 0.31% (0.89 ED visits per 100,000 people), respectively. 

These values indicate that the effect of temperatures in the upper part of the distribution is 

approximately linear. 

Panel B of Fig. 3 shows that the heat-induced increase in the ED visit consists almost 

entirely of mild cases that do not result in hospitalization. Following the hottest days, mild cases 

increase by 1.84% (4.42 ED visits per 100,000 persons), whereas severe cases increase by only 

0.46% (0.24 ED visits per 100,000 persons). Moreover, unlike mild cases, severe cases appear 
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to be unaffected by other warmer days above the reference category. However, on the coldest 

days, severe cases increase by 1.07% (0.56 ED visits per 100,000 persons). 

 

 

Fig. 3: The cumulative effects of temperatures on ED visits 

Notes: (A) Baseline relationship. (B) Estimates for severe and mild cases. Cumulative effects for lags 0-10. The 

cumulative coefficients are expressed as percentage effects, calculated by dividing the sum of the temperature 

coefficients by the sample average of the total ED visit rates over an 11-day period. In Panel B, the respective ED 

visit rates are used to calculate the percentage effects. Shaded areas represent 95% confidence intervals. The effects 

are compared to a day with a mean temperature of 5–10°C. The model includes district-by-year-by-month, day-

of-the-year, and day-of-the-week fixed effects. Precipitation and relative humidity are controlled for. The 

regressions are weighted by the mean adult population of each district over the period 2009–2017. Standard errors 

are clustered by district. 

 

The effects shown above are cumulative effects over 11 days. Figure A4 

(Supplementary Materials) reveals that the largest effects across all temperature categories are 

observed on the day of exposure, with half or more of the cumulative effect occurring within 

the first day. For the two highest temperature categories, ED visit rates are also increased in the 

following few days. In contrast, for the other temperature categories there is minimal difference 

between the cumulative effects at lag 0 and, for example, lag 7. However, the effects of the 

coldest temperatures at later lags appear to have the opposite effect compared to the effect at 

lag 0, with their 11-day cumulative effect reaching zero. 

Since the choice of 10 lags is somewhat arbitrary, Figure A5 (Supplementary Materials) 

demonstrates that the results remain consistent when using 7 or 13 lags instead of 10 (in addition 

to the contemporaneous temperature). For accurate comparison, the estimated results in this 

case are not expressed as percentage effects, but shown in absolute values. Additionally, the 

inclusion of an extended lag structure (lags 11–29) has no apparent impact on the baseline 

estimates. Over this additional 19-day period, the effects for all temperature categories are not 

significantly different from zero (Figure A6, Supplementary Materials). 
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The pattern of the temperature's effect on ED visits for most diagnosis groups is broadly 

similar to that observed for all visits (Figure A7, Supplementary Materials). However, there are 

some differences. Heat appears to exert a negligible or slightly negative effect on ED visits for 

diseases of the nervous, circulatory, and respiratory systems. In contrast, above-average heat-

induced increases are observed for endocrine and metabolic diseases, injuries, diseases of the 

skin and subcutaneous tissue, and general symptoms. In these cases, the cumulative effect of a 

day with an average temperature above 25°C is around 3% or more. Furthermore, cold reduces 

or does not affect ED visits for almost all diagnosis groups. The only exception is the category 

of injuries (which also includes poisoning and certain other consequences of external causes), 

where the effect is large and positive. 

To rule out the possibility that unmeasured seasonal factors drive the results, a 

falsification test was performed. In this estimation, the weather variables were replaced by 

temperature, precipitation, and humidity observations exactly one year later. Since emergency 

department visits cannot be affected by future weather (the impossibility of backward 

causation), zero temperature coefficients are expected in this specification. This is precisely 

what was found; the estimated effects are small and usually statistically insignificant (Figure 

A8, Supplementary Materials). 

A series of additional sensitivity tests provided further confirmation of the conclusion 

drawn from the baseline specification (Figure A9, Supplementary Materials). Replacing the 

district-by-year-by-month fixed effects with county-by-year-by-month and separate district 

fixed effects has no considerable impact on the results. Moreover, this was also the case when 

the more restrictive district-by-year-by-week fixed effects were included. In this latter 

specification, the temperature variability within a given district, year, and calendar week was 

leveraged. The baseline pattern of the temperature effects was also replicated when daily 

maximum or minimum temperatures were used, precipitation and humidity were excluded, 

three lags of the dependent variable were included, or a Poisson pseudo maximum likelihood 

(PPML) regression was estimated (Correia et al., 2020). 

Since the appropriate level(s) for clustering the standard errors is not entirely clear, 

alternative clustering methods were applied, demonstrating that the conclusions remain 

unchanged (Figure A10, Supplementary Materials). The statistical significance was unaffected 

even when more conservative clustering methods were used.  

The baseline pattern of the estimated temperature effects was also obtained for 

temperature categories with a 2°C range, with the lowest category representing a mean 

temperature of ≤−8°C and the highest category representing a mean temperature of >28°C 
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(Figure A11, Supplementary Materials). No significant difference was observed between the 

effects of temperature categories below 10°C. However, above 10°C, an almost linear 

relationship was observed between temperature and ED visits, with a higher ED rate 

consistently observed in warmer temperatures.  

The observation that as heat stress intensifies, so too does the emergency department 

visits, was supported by the results of the analysis of the heat-humidity interaction (Table 2). 

The effect on the ED visit rate is more pronounced when hot temperatures (>25°C) are 

accompanied by higher humidity levels than when they are accompanied by lower humidity 

levels. In the former case, the estimated cumulative effect is 1.93% (5.61 ED visits per 100,000 

people), while in the latter case, it is 1.39% (4.04 ED visits per 100,000 persons). Moreover, it 

is also important to note that the effect of prolonged heat stress on morbidity appears to be 

considerably stronger (Table 3). The cumulative effect of a day with an average temperature of 

>25°C when it is considered a heatwave day (preceded by at least four other >25°C days) is 

2.03% (5.91 ED visits per 100,000 people), while the impact of a >25°C day that is not 

considered a heatwave day is 1.50% (4.38 ED visits per 100,000 people). 

 

Table 2. Heat-humidity interaction 

Daily mean temperature (°C) (1) 

≤−5°C −0.04 (0.14) 

−5-0°C −0.13 (0.06)* 

0-5°C −0.09 (0.07) 

5-10°C ref. cat. 

10-15°C 0.30 (0.06)** 

15-20°C 0.53 (0.07)** 

20-25°C 1.06 (0.11)** 

>25°C  

low humidity 1.39 (0.14)** 

high humidity 1.93 (0.18)** 
Notes: Cumulative effects for lags 0-10. The cumulative coefficients are presented as 

percentage effects, calculated by dividing the sum of the temperature coefficients by the 

sample average of the total ED visit rates over 11 days. The model includes district-by-year-

by-month, day-of-the-year, and day-of-the-week fixed effects. Precipitation and relative 

humidity are controlled for. The regressions are weighted by the mean adult population of 

each district over the period 2009–2017. Standard errors are clustered by district. * p<0.05, 
** p<0.01 
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Table 3. The effect of heatwave days 

Daily mean temperature (°C) (1) 

≤−5°C −0.04 (0.14) 

−5-0°C −0.13 (0.06)* 

0-5°C −0.09 (0.07) 

5-10°C ref. cat. 

10-15°C 0.30 (0.06)** 

15-20°C 0.54 (0.07)** 

20-25°C 1.10 (0.11)** 

>25°C  

non-heatwave day 1.50 (0.16)** 

heatwave day 2.03 (0.22)** 
Notes: Cumulative effects for lags 0-10. The cumulative coefficients are presented as 

percentage effects, calculated by dividing the sum of the temperature coefficients by the 

sample average of the total ED visit rates over 11 days. The model includes district-by-year-

by-month, day-of-the-year, and day-of-the-week fixed effects. Precipitation and relative 

humidity are controlled for. The regressions are weighted by the mean adult population of 

each district over the period 2009–2017. Standard errors are clustered by district. * p<0.05, 
** p<0.01 

 

4.2. Heterogeneities in the temperature effects 

The subsequent analysis examines the heterogeneities in the temperature effects, estimating 

how these vary by sex, age, district-level income, and GP density. The percentage effects are 

calculated using group-specific means of the ED visit rate. 

No substantial difference is observed in the temperature effects between women and 

men (Panel A of Fig. 4). For example, the effect of a day with an average temperature above 

25°C is 1.68% for women and only slightly lower (1.51%) for men. Similar minimal differences 

are found across most other temperature categories. 

In contrast, notable differences emerge across age groups, at least for the warmer 

temperatures (Panel B of Fig. 4). The effects of the warmer temperature categories decrease 

considerably with advancing age, whereas the effects of colder temperatures vary only to a 

more limited extent. The 11-day cumulative effect of a day with an average temperature above 

25°C is 2.31%, 1.61%, and 0.65% for the youngest (18-44 years old), middle (45-64 years old), 

and oldest (65 years old or older) age groups, respectively. Importantly, these differences are 

reflected not only in percentage effects but also in absolute terms: the heat-related increase in 

ED visits is much larger for the youngest age group (5.77 ED visits per 100,000 persons) 

compared to the middle-aged (4.35 ED visits per 100,000 persons) and the oldest generation 

(2.70 ED visits per 100,000 persons). Large differences are also observed for the 20-25°C 

temperature category. 
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Panel C of Fig. 4 summarizes the relationship between temperature and ED visits across 

three income groups: the low-, middle-, and high-income districts. The results show that the 

effects of higher temperature categories tend to weaken with increasing income. For exposure 

to temperatures above 25°C, the effects are 1.82% in the low-income districts, 1.56% in the 

middle-income districts, and 1.39% in the high-income districts. Similarly, for the 20-25°C 

temperature category, the effects are 1.35%, 1.08%, and 0.79%, respectively. In contrast, the 

effects of the coldest temperature category show some variation but appear unrelated to income 

levels. 

Panel D of Fig. 4 explores the relationship between temperature effects and the quality 

of primary health care, proxied by the number of GPs per 100,00 inhabitants. Generally, in 

districts with high GP density, the effects of warmer temperature categories are lower than in 

districts with medium or low GP density. The effect of a >25°C day is 1.39% in high GP density 

districts, compared to 1.65% and 1.55% in districts with medium and low GP density, 

respectively. The differences are even more pronounced for the 20-25°C temperature category, 

with effects of 0.54%, 1.19%, and 1.30%, respectively. 
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Fig. 4: Heterogeneity in the effects of temperature 

Notes: Cumulative effects for lags 0-10. The cumulative coefficients are expressed as percentage effects, 

calculated by dividing the sum of the temperature coefficients by the sample average of the total (group-specific) 

ED visit rates over 11 days. Shaded areas represent 95% confidence intervals. Standard errors are clustered by 

district. 

 

4.3. The impact of climate change, 2009-2017 

Fig. 5  illustrates the impact of temperature changes observed between 1950–1989 and 2009–

2017 on the total number of ED visits in Hungary. The calculations are based on Eq. 5, assuming 

a total population of 8.1 million adults in Hungary. The figure presents the cumulative number 

of excess ED visits over the nine-year sample period, revealing a clear, steadily increasing 

trend. Each year shows a varying number of excess visits due to shifts in the temperature 

distribution relative to 1950–1989. By the end of the period, the total number of excess ED 

visits reaches approximately 46,800 (95% CI: 39,300–54,200). This figure exceeds the annual 

patient volume of an average rural emergency department (Varga et al., 2017), and accounts for 

0.66% of all ED visits from 2009 to 2017. 
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Fig. 5: The impact of climate in 2009-2017 

Notes: The cumulative number of excess ED visits due to temperature changes. Changes in the temperature 

distribution are calculated as the difference between the period of 1950–1989 and each year from 2009–2017. The 

impacts are calculated assuming a total population of 8.1 million adults in Hungary. Shaded areas represent 95% 

confidence intervals. 

 

4.4. The impact of climate change, 2050s 

The future morbidity burdens of climate change were examined for the 2050s under the 

assumption that the relationship between ED visits and temperatures will be the same in the 

future as was observed between 2009 and 2017. By combining the projected temperature 

changes between 2000–2014 and 2050–2059 from thirty-one climate models with the estimated 

temperature coefficients (see Eq. 4), I found that the average projection suggests an increase of 

1.24% (95% CI, 0.54%–2.84%) in annual the ED visit rate under the SSP2-4.5 climate scenario 

and an increase of 1.70% (95% CI, 0.70%–3.47%) under the SSP5-8.5 scenario (Fig. 6, Panel 

A). These percentage changes represent an increase of 119.6 (95% CI, 52.1–274.8) and 164.5 

(95% CI, 68.1–335.3) ED visits per 100,000 persons per year under the SSP2-4.5 and SSP5-

8.5 scenarios, respectively. 

The latest baseline population projection from Eurostat (EUROPOP2023) indicates that 

the Hungarian adult population will be approximately 7.6 million by the mid-2050s. Based on 

this figure, the total morbidity burden due to climate change for Hungary in the 2050s is 

estimated to be approximately 91,000 additional ED visits under the SSP2-4.5 scenario and 

approximately 125,000 additional ED visits under the SSP5-8.5 scenario. It is important to note 

that the climate change-induced additional ED visits will not be distributed uniformly across 
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the year. Nearly 50% of the increase is projected to occur during the summer months, slightly 

over 25% during autumn, and approximately 20% during spring, while the ED visits during the 

winter months are expected to remain almost unaffected (Fig. 6, Panels B and C). 

 

 

Fig. 6: The impact of climate change in the 2050s on ED visits 

Notes: (A) The percentage impact of climate change on the annual ED visit rate. (B) and (C) Change in the total 

number of ED visits in the 2050s by season assuming a population of 7.6 million adults in Hungary. The impacts 

are calculated using changes in the temperature distribution between the periods of 2050–2059 and 2000–2014. 

The black horizontal lines indicate the mean of the projections, the boxes are the interquartile ranges, and the 

whiskers show the middle 95% of the projections. 

 

4.5. Climate change heterogeneity 

Although the impacts described above highlight the societal consequences of climate change as 

a whole, it remains unclear which groups will bear the greatest burden. To address this, the 

subsequent analysis utilizes the group-specific temperature effects across the entire temperature 

distribution (see Fig. 4) and calculates the projected impacts of climate change for the 2050s, 

disaggregated by sex, age, district-level income, and GP density. Table 4 summarizes these 

projections, presenting the averages. 

As shown earlier, the temperature effects for men and women are virtually identical. 

Consequently, the projected impacts of climate change also do not differ between the sexes. 

For example, under the SSP5-8.5 scenario, the average projected increase in the annual ED visit 

rate is 1.71% for women and 1.69% for men. 
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The large differences in the temperature effects across age groups (Fig. 4) are mirrored 

in the projected climate change impacts. The percentage increase in the ED visit rate due to 

climate change is more than four times greater for the 18–44 age group and more than one and 

a half times greater for the 45–64 age group compared to the 65+ age group. Under the SSP5-

8.5 scenario, the projected increase in the annual ED visit rate is 2.61% for the youngest age 

group, 1.53% for the middle age group, and 0.63% for the oldest age group. 

Income disparities are also not negligible in the projected impacts of climate change. 

The average projections show that the effect on individuals living in the poorest districts is 

about 35% larger than for those in the richest districts and about 30% larger than for those in 

the middle-income districts. For instance, under the SSP5-8.5 scenario, the average of the 

projections on the annual ED visit rate is 2.07% for the low-income districts, 1.59% for the 

middle-income districts, and 1.55% for the high-income districts. 

Similarly, the calculations indicate that districts with lower GP density will experience 

a larger increase in the ED visits due to changing climate. Under the SSP5-8.5 scenario, the 

average projected increase is 1.86% for the low GP density districts, 1.72% for the middle GP 

density districts, and 1.37% for the high GP density districts. 

 

Table 4. Average projected impacts of climate change on the ED visit rate 

 Climate scenario 

 SSP2-4.5 SSP5-8.5 

Sex   

Women 1.24% 1.71% 

Men 1.23% 1.69% 

Age   

18-44 1.91% 2.61% 

45-64 1.10% 1.53% 

65- 0.45% 0.63% 

Income category   

Poor 1.53% 2.07% 

Middle 1.15% 1.59% 

Rich 1.11% 1.55% 

GP density   

Low 1.40% 1.86% 

Medium 1.26% 1.72% 

High 0.93% 1.37% 
Notes: Percentage impacts of climate change on the annual ED visit rate in the 

2050s. The impacts are calculated using changes in the temperature distribution 

between the periods of 2050–2059 and 2000–2014. 
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5. Conclusions 

This study, using high-quality administrative data on emergency department visits in Hungarian 

outpatient care from 2009 to 2017, demonstrated that ambient temperature has a substantial 

effect on morbidity. A day with an average temperature above 25°C was found to result in a 

4.65-visit increase per 100,000 individuals on the day of exposure and the subsequent 10 days, 

relative to a daily mean temperature of 5-10°C. This represents a 1.6% increase, expressed as a 

percentage of the sample average of the total ED visit rates over 11 days. The effects of the 

other temperature categories above the reference temperature were also positive, showing a 

consistent pattern: the higher the temperature, the stronger its effect on ED visits. It is also 

shown that the temperature-induced increases are primarily driven by mild cases; ED visits that 

are not followed by hospitalization. The results regarding the moderating effect of humidity and 

the impact of consecutive hot days suggest that the stronger the heat stress, the greater the effect 

on morbidity. In contrast, colder temperatures below the reference category (5-10°C) were 

found to have no substantial effects on ED visits. 

Comparing the results with other studies is challenging due to variations in time scales 

(daily, weekly or monthly data), outcome variables, the choice of temperature metrics 

(minimum, maximum or mean), reference temperature, and the inclusion and treatment of 

lagged effects. Additionally, differences in climate and health care systems across countries or 

regions may influence the findings. 

Despite these challenges, the estimated effect of heat in this study aligns reasonably well 

with findings from other studies on ED visits. When comparing these results, it is important to 

consider how the percentage (relative) effects are computed, specifically the reference value 

against which the effect is calculated. For example, it makes a difference whether the 

benchmark is the average number of ED visits per day, per week or even per month. Gould et 

al. (2024) report that in California, one additional day with a daily maximum temperature above 

34°C increases the monthly ED visit rate by nearly 0.4%. Sun et al. (2021), using U.S. data and 

accounting for lagged effects up to five days, found that ED visits are 7.8% higher (expressed 

as a percentage of daily ED visits) when the daily maximum temperature exceeds 34.4°C. 

Similarly, White (2017) reported that in California, a day with an average temperature above 

80°F (~26.7°C) increases ED visits by 5.1% over a 31-day period (expressed relative to the 

average daily ED visit rate). Gibney et al. (2023) report that in England, hot temperatures 

increase weekly ED visits by approximately 7.5% over a four-week period. Across these 

studies, the observed effects are typically concentrated within the first one or two weeks 

following high temperatures, with later lags showing little to no effect. Re-expressing these 
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findings relative to the total ED visit rate over one- or two-week periods would make most of 

them broadly comparable to the results of this study. 

In contrast, the estimated effects of cold temperatures vary considerably across studies. 

Some, such as Gould et al. (2024) and Sun et al. (2021), report that ED visits decrease during 

cold weather compared to mild temperatures. Others, such as White (2017), observe the 

opposite, while Gibney et al. (2023), consistent with this paper, find no significant effect of 

cold temperatures on ED visits. However, the present study also highlights some important 

heterogeneity. Mild and severe cases respond differently to cold temperatures. While ED visits 

that do not result in hospitalization slightly decrease with exposure to cold temperatures, the 

number of severe cases increases significantly. Since mild cases constitute the majority of total 

ED visits, the overall effect is practically zero. 

The observed temperature effects and projected temperature changes of this paper imply 

that by the 2050s (compare to the period 2000–2014), the annual ED visit rate will increase by 

1.24% under the SSP2-4.5 climate scenario (corresponding to 119.6 ED visits per 100,000 

people per year), and by 1.70% under the SSP5-8.5 scenario (equivalent to 164.5 ED visits per 

100,000 people per year). Nearly 50% of the increase is projected to occur during the summer 

months. At the same time, climate change is already having a measurable impact on ED visits 

today. During the sample period, 2009–2017, 46,800 ED visits (0.66% of all ED visits) were 

attributed to changes in the temperature distribution compared to 1950–1989. 

Beyond these average effects, substantial heterogeneities were observed. Individuals 

residing in districts with lower income levels appear to experience greater adverse effects when 

exposed to high temperatures. By the 2050s, the projected increase in ED visits due to climate 

change in low-income districts is estimated to be 30–35% higher than in middle-income or 

higher-income districts. This disparity may be partially attributed to inadequate insulation and 

limited access to air-conditioning in low-income areas, as well as a higher prevalence of outdoor 

occupations more directly exposed to extreme weather conditions. 

Furthermore, temperature-induced increases in ED visits are significantly smaller in 

districts with a high density of general practitioners compared to those with low GP density. As 

a result, the projected impacts of climate change are 35–50% greater in districts with low GP 

density. These findings indicate a substitution relationship between emergency care and 

primary care services. General practitioners may effectively manage and treat many heat-related 

health issues, which, as shown in this study, are primarily milder cases, thereby reducing the 

demand for emergency treatment. 
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The largest differences, however, were observed across age groups. As age increases, 

the effect of temperature decreases substantially, a finding consistent with some other studies 

(Gould et al., 2024; Sun et al., 2021; White, 2017). As a result, by the 2050s, the projected 

impact of climate change on ED visits is more than four times larger for the youngest age group 

compared to the oldest age group. 

These findings mean that policymakers need to develop strategies to mitigate the effects 

of climate change on morbidity. For example, it could be important to implement heat warning 

systems that provide information to those most vulnerable in order to help them avoid the 

adverse effects of heat. Local authorities may need to open cooling stations where people can 

spend the hottest hours. The results also show that it is not always easy to predict which social 

groups will be most affected by the impacts of climate change. For instance, in the case of 

health impacts, it is easy to assume that the older population, who tend to be in poorer health, 

will suffer most of the consequences. This may be true for health impacts such as mortality. 

However, when it comes to ED visits, we have seen that the impacts are more pronounced for 

the younger generations. The results also suggest that more easily accessible GP care may 

reduce the overload on emergency care during heatwaves. By coordinating and properly 

planning the different modes and levels of care, treatment efficiency and patient satisfaction 

may be increased. Finally, it is perhaps also worth noting that humanity would be best served 

not by trying to mitigate the effects of climate change, but by trying to limit climate change 

itself and keep it to as low a level as possible. While it is important to prepare for the potential 

impacts, this does not mean that the best decision is to focus our limited resources on this alone. 

As many of the potential impacts of climate change are unforeseen, it may be worthwhile to 

adopt a strategy that aims to avoid having to face these potentially catastrophic effects by 

limiting future warming of the climate. 
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Supplementary Materials 

 

 

Figure A1. Temperature differences across years and districts 

Notes: (A) District-level averages of the annual number of days with an average temperature >25 °C for 2009–

2017. (B) District-level averages of the annual number of days with an average temperature ≤−5 °C for 2009–

2017. (C) Country-level averages of the number of days per year with an average temperature >25 °C. (D) Country-

level averages of the number of days per year with an average temperature ≤−5 °C. The country-level values are 

calculated as the weighted average of the district-level values. The average number of populations over the years 

2009-2017 is used as each district's weight. 
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Figure A2. Income differences and GP density across districts 

Notes: (A) Rich = richest 25%, middle = middle 50%, poor = poorest 25%. (B) High = highest 25%, medium = 

middle 50%, low = lowest 25%. Population-weighted shares. Based on the average annual pre-tax income per 

capita and the average number of general practitioners per 100,000 persons for the years 2009-2017. 
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Figure A3. Projected temperature changes between the periods 2050-2059 and 2000-2014 

Notes: Each circle shows the projections of one of the thirty-one climate models. 
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Figure A4. Cumulative effects by lag 

Notes: The point estimates represent the cumulative effect for a given temperature category up to the corresponding 

lag. The cumulative coefficients are presented as percentage effects, calculated by dividing the sum of the 

temperature coefficients by the sample average of the total ED visit rates over 11 days. Shaded areas represent 

95% confidence intervals. Standard errors are clustered by district. 
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Figure A5. Temperature effects using different number of lags 

Notes: Cumulative effects over 8, 11 or 14 days. Shaded areas represent 95% confidence intervals. The effects are 

compared to a day with a mean temperature of 5–10°C. Standard errors are clustered by district. 
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Figure A6. Cumulative effects for lags 0-10 and lags 11-29 

Notes: The cumulative coefficients are presented as percentage effects, calculated by dividing the sum of the 

temperature coefficients by the sample average of the total ED visit rates over 11 (lags 0-10) or 19 days (lags 11-

29). Shaded areas represent 95% confidence intervals. The effects are compared to a day with a mean temperature 

of 5–10°C. Standard errors are clustered by district. 
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Figure A7. Temperature effects by diagnosis category 

Notes: The cumulative coefficients are presented as percentage effects, calculated by dividing the sum of the 

temperature coefficients by the sample average of the total ED visit rates over 11 days. Shaded areas represent 

95% confidence intervals. The effects are compared to a day with a mean temperature of 5–10°C. Standard errors 

are clustered by district. The diagnosis categories are defined by ICD-10 codes. Infectious and parasitic: A00-99, 

B00-99, Neoplasms: C00-97, D00-48, Endocrine: E00-90, Mental, behavioral: F00-99, R40-49, Nervous system: 

G00-99, R25-29, Circulatory: I00-99, R00-04, Respiratory: J00-99, R05-09, Digestive: K00-93, R10-19, Skin and 

subcutaneous tissue: L00-99, R20-23, Musculoskeletal: M00-99, Genitourinary: N00-99, R30-39, Injury: S00-99, 

T00-98, General symptoms: R50-69, Other: D50-89, H00-95, O00-99, P00-96, Q00-99, R70-99, V00-99, W00-

95, X00-99, Y00-98, Z00-99, U00-99. 
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Figure A8. Falsification test with future temperatures 

Notes: Cumulative effects for lags 0-10. Based on temperatures measured one year later. The cumulative 

coefficients are presented as percentage effects, calculated by dividing the sum of the temperature coefficients by 

the sample average of the total ED visit rates over 11 days. Shaded areas represent 95% confidence intervals. The 

effects are compared to a day with a mean temperature of 5–10°C. Standard errors are clustered by district. 

 

 

  



37 

 

 

 

Figure A9. Sensitivity tests 

Notes: Cumulative effects for lags 0-10. The cumulative coefficients are presented as percentage effects, calculated 

by dividing the sum of the temperature coefficients by the sample average of the total ED visit rates over 11 days. 

Shaded areas represent 95% confidence intervals. Standard errors are clustered by district. 
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Figure A10. Alternative clustering methods 

Notes: Cumulative effects for lags 0-10. The cumulative coefficients are presented as percentage effects, calculated 

by dividing the sum of the temperature coefficients by the sample average of the total ED visit rates over 11 days.  
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Figure A11. The cumulative temperature effects using 2°C-wide temperature categories 

Notes: Cumulative effects for lags 0-10. The cumulative coefficients are presented as percentage effects, calculated 

by dividing the sum of the temperature coefficients by the sum of the daily ED visit rates over an 11-day period. 

Shaded areas represent 95% confidence intervals. The effects are compared to a day with a mean temperature of 

6–8°C. Standard errors are clustered by district. 
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Table A1: ED visit rates by subgroups 

 Mean SD 

Age   

18-44 22.7 22.5 

45-64 24.6 26.0 

65- 37.8 40.5 

Sex   

Women 25.6 23.7 

Men 27.5 25.8 

Income category   

Poor 27.1 23.2 

Middle 29.4 22.6 

Rich 19.5 16.5 

GP density   

Low 25.1 20.4 

Medium 28.7 22.8 

High 20.1 18.8 
Notes: Population-weighted figures. Unit of observations: district-by-day.  

 

 


