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Abstract

This study examines the impact of ambient air pollution on birth rates in Europe. We
estimate the causal effect of air pollution on fertility by utilizing variations in wind speed
and the number of heating days as instrumental variables for air quality. Our analysis
encompasses 657 NUTS-3 regions, with each region having 2 to 6 years of observations
between 2015 and 2020. Thus, our study is the first to extend this analysis to multiple
countries, pollutants, and years. Our findings indicate that a one standard deviation increase
in particulate matter concentration levels leads to a 5.1% decrease in birth rates the following
year and an additional 5.9% decrease two years later. Moreover, a similar increase in air
pollution has a more pronounced adverse effect on fertility in countries with lower GDP.
Other pollutants have little role in shaping fertility outcomes. This result is important for
environmental policies with limited resources.

Keywords: Ambient Air Pollution, Fertility, Instrumental Variables, Particulate Matter
JEL: Q53, J13, I14

0Corresponding author: Agnes Szabo-Morvai (ORCID: 0000-0003-3629-6352). HUN-REN KRTK KTI
and University of Debrecen, email: szabomorvai.agnes@krtk.hun-ren.hu, Fax: +36-1-224 6700, Phone: +36-
30-407-1224, Postal Address: HUN-REN KRTK KTI, 1097 Budapest, Tóth Kálmán u. 4. Árpád Stump
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1. Introduction

In the past 70 years, fertility rates have been falling in most developing countries, raising

concern for the sustainability of pension and healthcare systems. At the same time, air

pollution has become a leading environmental and health concern all around the world

(Fowler et al., 2020). In this research, we examine whether and how much air pollution

affects fertility rates. The results of the analysis have direct policy relevance for developed

countries aiming to combat low fertility.

Air pollution is significant health concern in modern societies. The World Health Or-

ganization (WHO) ranked ambient air pollution among the ten most important threats to

global health in 2019 (WHO, 2019). According to the 2018 Special Report of the European

Court of Auditors (ECA, 2018), lost years of healthy life from ambient air pollution is on

average 0.75 per one hundred inhabitants in Europe. In 2021, 97% of the urban population in

Europe was exposed to particulate concentrations exceeding the WHO guidelines (European-

Council, 2024). More specifically for this study, air pollution significantly affects fertility, as

shown by several studies summarized by the meta-studies of Frutos et al. (2015), Conforti

et al. (2018), Jahnke et al. (2022), and Siegel et al. (2023). These meta-analyses present

several studies examining the effects of air pollution concentrations on fertility, fecundabil-

ity, sperm count, miscarriages, and still births. Most studies include only one pollutant at

a time and thus may suffer from omitted variables bias. Moreover, some articles include

multiple pollutants and some of them also employ instrumental variables methods to cir-

cumvent omitted variables bias stemming from omitted pollutants and unmeasured factors

(Slama et al., 2013; Nieuwenhuijsen et al., 2014; Zanobetti et al., 2014; Nobles et al., 2018;

Godzinski and Suarez Castillo, 2021). But even these latter studies, using typically small

sample sizes, refer to only one country (or state, or city) or cover a short period of time. Our

study uses a multiple pollutant method combined with an instrumental variable strategy,

using wind speed and heating days as instruments for pollution concentrations. We analyze

yearly birth rates and the air pollution data of 36 countries in Europe and its neighborhood

at the NUTS 3 region level, including the concentration levels of the ten most important

pollutants. To our knowledge, this is the first article to study the fertility effects of air

pollution using an extended number of countries and years and, at the same time, including

multiple pollutants. As a result, our results have strong external validity.

There is a large body of literature that studies how air pollution affects various fertility

outcomes in the short and long run. Levine et al. (2017) documents a dramatic, more than

50% decrease in sperm count between 1973-2011 worldwide, and there is direct evidence on

the causal relationship between air pollution and declining semen quality such as concentra-

tion, count, and motility (Qian et al., 2022). Furthermore, particulate matter may induce

2



inflammatory processes and hormonal disruption which may have a detrimental effect on

fecundability (Siegel et al., 2023). Additionally, according to recent evidence, particulate

matter may also reach the placenta which can increase risks to the fetus (Bové et al., 2019).

Pollutants also have a negative effect on ovarian reserve and increase the risk of endometriosis

and PCOS which reduce fecundability (Siegel et al., 2023).

In the next section, we discuss our data collection. Section 3 describes our empirical

method and provides details of robustness checks. We present our main results and het-

erogenous effects, and the related robustness checks in Section 4. In Section 5, we present

the results of linear simulation results using our main model. Finally, Section 6 concludes

the article.

2. Data

First, we collect air quality data from the European Environment Agency (EEA) using a

web scraping technique in order to gather the air quality data collected using a representative

sample of measuring stations that member states upload to the Internet. Note that the

most frequently studied pollutants in the literature are particulate matter, carbon-monoxide,

sulfur-dioxide, and nitrogen-dioxide. We extend the list of pollutants and collect information

about nitrogen dioxide (NO2), nitrogen monoxide (NO), different nitrogen oxides (NOx),

ozone (O3), sulfur dioxide (SO2), different sizes of particulate matter (PM2.5 and PM10),

benzene (C6H6), lead (Pb), and carbon monoxide (CO). We downloaded more than 1.1

billion data points (see Table A.5 in the Appendix). CO pollution is measured in mg/m3,

while all the other pollutants are measured in µg/m3.

We first clean the database and delete observations that are not on hourly or daily fre-

quency, observations with negative concentration values, and all non-validated observations

(mostly missing values). Second, we calculate daily averages from the hourly data. We con-

nect the stations to NUTS-3 regions using the GPS coordinates of the measurement stations.

Since countries only report a representative selection of their air quality data to the EEA,

we do not have stations in each NUTS-3 region. When there are more stations in a region,

we calculate the average daily concentration across stations for each NUTS-3 region.

We aggregate the daily NUTS-3 average concentration levels to the yearly frequency

using three methods. First, we calculate the yearly mean for each pollutant and for each

NUTS-3 region. Second, we calculate deciles of the daily pollution levels across every NUTS-

3 region for the whole observation period. Then for each year and NUTS-3 region, we count

the number of days when the pollution concentration was in or above the given decile. For

instance, D9rtp shows the number of days when the concentration level of pollutant p was

in the 9th or the 10th pollution decile in region r and year t. Third, we also examine the
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concentrations relative to the European Air Quality Standards as of 2023 (ACS, see Table

A.6 and Figures A.7 and A.8 in the Appendix)1. For example, ACS 125%rtp is the number

of days when the concentration of pollutant p exceeded 125% of the relevant concentration

limit in year t and region r.

Birth rates are based on Eurostat data (EUROSTAT, 2022), and are calculated as the

ratio between the number of live births and the number of women of reproductive age (15-44)

on 1st January. The total female population in the NUTS-3 regions is used as weights in the

regressions. We also use EUROSTAT data to include NUTS-3-level GDP per person.

The NUTS-3 level yearly heating degree days (HDD) data are provided by the Joint

Research Centre’s AGRI4CAST Resources Portal (EUROSTAT, 2021). HDD is a weather-

based technical index which is higher if there is more need for heating, taking into account the

outdoor temperature, the usual indoor temperature, and technical details of the buildings.

We also use NUTS-2 level daily wind speed data (measured in km/h) from the Copernicus

Climate Change Service (Commission, 2020). From the daily observations, we calculate the

yearly mean wind speed.

Tables A.7 and A.8 in the Appendix show the overall coverage of the variables. Note

that we only include the NUTS-3 regions that have at least one pollution data observation.

HDD has good coverage, as there is data available for every NUTS-3 region in the EU, but,

in general, there are no observations for countries outside of the EU (e.g, the UK). The birth

rate is available for most of the regions, however, demography structure indicators (e.g., the

female population aged 15-44) were only available from 2014 and on.

As Table A.7 in the Appendix indicates, there is a trade-off between using many pollu-

tants and many regions in our regressions. As a solution, we include pollutants with a low

number of observations (NO, C6H6, and Pb) in the LASSO regressions, but we omit them

from the main regression analyses. Still, there is a strong correlation between the yearly

levels of the remaining pollutants (Table A.9 in the Appendix). For example, the correla-

tion coefficient between PM2.5 and PM10 pollution levels is 0.81. NO2 has a very strong

correlation with NOx, the correlation coefficient is 0.74.

To circumvent this issue, we use principal factor analysis to combine the highly correlated

pollutants. As a result, we are left with three pollutant variables in the main regressions:

PM Factor, NO Factor, and SO2. PM Factor includes PM10, PM2.5, and CO. The primary

sources of particulate matter pollution are local combustion (e.g., traffic, metal industry

plants), residential heating with solid fuels in cold seasons and biological material (e.g.,

1For some pollutants, such as NO and NOx, no daily mean pollution threshold values are set by the EU.
For these pollutants, we use the annual target value or the maximum daily 8-hour mean value.
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vegetative debris, spores and pollen) in warm and dry seasons (Sillanpää et al., 2006). The

largest part of CO emissions come from the incomplete combustion of vehicle fuels. NO

Factor includes NO2, NOx stemming from the combustion of fossil fuels, like car emissions

and O3 which is produced as a result of a chemical reaction of NO2 and NOx with oxygen in

the presence of heat and sunlight. SO2 is included in the regressions by itself. This pollutant

is mainly created when electric utilities and power plants burn coal and oil. For the details

of the factorization, see Table A.10 in the Appendix.

3. Empirical method

3.1. Naive OLS

Our goal is to estimate the effect of air pollution on fertility. First, we estimate naive

regressions of pollution indicators in the previous year on the natural logarithm of the birth

rate. In our main specification, ambient air pollution is measured by the number of days in

a year when the concentration of a pollutant exceeded 125% of the air quality standards.

It is important that all pollutants are included in the regression at the same time because

they are correlated and many of them may affect fertility. Examining only one pollutant at

a time would likely cause the estimates to suffer from omitted variables bias.

The observations are aggregated to the year (t) and NUTS-3 region (r) level. We include

year fixed effects (ηt) to control for any general shock that affected the regions at the same

time, such as Europe-wide economic cycles. We also include region fixed effects (λr) to control

for unobserved differences between regions that are unchanged in a few years of time, such

as social norms that influence environmental consciousness and fertility decisions. Finally,

we allow for region-specific linear time trends (λr × t) of fertility in the model. Throughout

the analysis, we use robust standard errors clustered at the NUTS-3 level. We estimate the

following model:

ln(Yrt) =
5∑

i=1

βiP
i
rt−1 + ηt + λr + λr × t+ εrt (1)

where Yrt is the birth rate, the number of births per 1000 women of age 15 to 44 in region r

and year t, P i
rt is the concentration level of pollutant i in region r and year t, and εrt is the

error term. We calculate robust standard errors clustered at the NUTS-3 region level.

Air pollution can possibly affect fertility in the longer run as well. To test this, we include

2-year lags of the pollutants in our second specification.

ln(Yrt) =
5∑

i=1

βiP
i
rt−1 +

5∑
i=1

γiP
i
rt−2 + ηt + λr + λr × t+ εrt (2)
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Next, we include regional-level GDP as an additional control variable.

ln(Yrt) =
5∑

i=1

βiP
i
rt−1 +

5∑
i=1

γiP
i
rt−2 + τGDPrt−1 + ηt + λr + λr × t+ εrt (3)

3.2. Instrumental variables approach

There can be other region-specific time-variant variables that we cannot observe, such as

future expectations or regional variations in spending on public services (health services and

public transport). Not controlling for them in the analysis may lead to a bias of unknown

direction and size in our point estimates.

To circumvent this source of bias, we follow an instrumental variables design. Our in-

struments are wind speed and the number of heating days. These variables have been used

as instruments for pollution in the literature before. Knittel et al. (2016) use local weather

conditions, Schwartz et al. (2015), Schwartz et al. (2017), Zabrocki et al. (2022), Godzinski

and Suarez Castillo (2021), and Deryugina et al. (2019) use wind direction and speed, and

Arceo et al. (2016) use temperature (thermal inversions) to instrument endogenous ambient

air pollution concentrations.

In the bulk of the previous literature, only one or just a few pollutants have been included

in the regressions. In this case, even using an instrumental variable design does not provide

unbiased point estimates, because the exclusion restriction likely does not hold when the

instrument affects the pollutants omitted from the regressions (Benmarhnia et al.).

We can use wind speed and the number of heating days and their nonlinear functions

as instruments because they affect ambient air pollution concentration and composition.

Higher wind speed helps to dissipate high concentrations of ambient air pollution. Whereas,

on cold winter days, the emissions increase as a result of the heating activity. The number

of heating days captures this relation. Figure A.6 in the Appendix depicts the associations

between the pollutants and the instruments.

The instrumental variables strategy provides unbiased estimates if the exclusion restric-

tion holds. This ultimately consists of two parts. First, the instrumental variables should be

exogenous to fertility rates in the sense that these are not affected by any other factors that

may correlate with fertility rates, such as economic cycles. In the case of wind and weather,

it is safe to assume that the daily and short term yearly deviations from the average are not

affected by any of these factors.

Second, it is important that these weather conditions only affect fertility through air

pollution and no other channels. In the previous literature, we know of no evidence that

wind speed or the number of cold days would directly affect fertility rates (see e.g. Lam and

Miron, 1996). Nevertheless, it might be a concern that a high number of cold days could
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affect agricultural activities negatively; however, the number of heating days occurs mostly

in winter, thus it has a moderate effect on agriculture. Moreover, the share of agriculture

in the GDP is very low in the EU, 1.6% on average in 2021 (WorldBank, 2024). Thus, it is

unlikely that the number of heating days could have a meaningful effect on fertility through

employment or GDP. Likewise, as the food markets of the EU are integrated, it is not likely

that cold days in one region could significantly affect food prices and through them fertility.

As mentioned before, we include 3 pollution variables (PM Factor, NO Factor, and SO2)

in the main regressions, thus we need at least 3 instruments. As Figure A.6 shows, there

is a nonlinear relationship between the pollutants and the instruments. Thus, we use non-

linear combinations of two instruments, including squared and cubic values, interactions and

indicator functions, altogether 22 instruments2. We include the same lagged values of the

instruments as of the pollutants. In our main specification, one and two-year lags of the

pollutants and the instruments are included. We run two-stage least squares (2SLS) regres-

sions. The first-stage results show how strong and significant the relationship is between the

instruments and pollution concentrations. The first stage for the pollution concentrations

one year before birth is:

P i
r,t−1 =

2∑
j=1

22∑
k=1

(πk,t−jZk,t−j) + τGDPrt + ηt + λr + λr × t+ εrt (4)

where subscript j denotes the number of lags, and k is the kth instrument from the list of

instruments, r denotes region, and t stands for year. The first stage for the pollutants two

years before birth is:

P i
r,t−2 =

2∑
j=1

22∑
k=1

(πk,t−jZk,t−j) + τGDPrt + ηt + λr + λr × t+ εrt (5)

The reduced-form equations are the following:

ln(Yrt) =
2∑

j=1

22∑
k=1

(πk,t−jZk,t−j) + τGDPrt + ηt + λr + λr × t+ εrt (6)

2Instrument list: Mean wind speed (WS), WS2, WS3, Number of heating days (HDD), HDD2, HDD3,
HDD × WS, HDD × WS2, HDD × WS3, HDD × WS, HDD2 × WS, HDD3 × WS, Days(WS >
4km/h), Days(WS > 5km/h), Days(WS > 6km/h), Days(WS > 7km/h), Days(WS > 8km/h),
[Days(WS > 4km/h)]2, [Days(WS > 5km/h)]2, [Days(WS > 6km/h)]2, [Days(WS > 7km/h)]2,
[Days(WS > 8km/h)]2.
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3.3. LASSO estimations

In the OLS and 2SLS regressions, we simplified the estimations in two ways. First, we

omitted NO, C6H6, and Pb due to the low number of observations. If these pollutants affect

fertility, our regressions suffer from omitted variables bias. Second, we combined individual

pollutants into factors, but we may want to know how much each of these affect fertility.

We use the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996)

which allows us to include each pollutant that we observe in the data. Thus, we can get an

idea about how important those factors are that we omitted from the main specifications,

and whether we need to worry about them. Moreover, LASSO also permits us to separately

evaluate the importance of each pollutant in the same regression, without combining them

in factor variables.

LASSO is very similar to ordinary least squares (OLS) regression, except that the mini-

mand function of the optimization does not only include the residual sum of squares (RSS),

but also a penalty term (λ) that increases with larger absolute values of the regression coef-

ficients (see equation 7). In practice, this optimization method finds the curve that fits the

data best, using as small a number of variables with β ̸= 0 as possible.

n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + λ

p∑
j=1

|βj| = RSS + λ

p∑
j=1

|βj| (7)

In other words, the lasso technique uses shrinkage and thus offers a simple way to select

a model with reasonably few variables, which performs the best out-of-sample prediction of

the dependent variable (James et al., 2013). Recently, it has become an accepted method to

use machine learning techniques to select control variables, see Angrist and Frandsen (2019),

Böheim and Stöllinger (2020), and Fluchtmann et al. (2020), for instance. In the baseline

LASSO specification, we use the cross-validation function to select λ and we use a linear

LASSO model.

3.4. Robustness checks

First, we include other measures of ambient air pollution concentrations. Besides the

number of days when the concentrations exceeded 125% of the European air quality standard

concentration limits, we measure the pollution concentration with the number of days when

the concentrations exceeded 125% of the European air quality standard concentration limits;

the number of days when the concentration levels reached the 10th decile of pollution; and

the mean pollution concentrations, as described in Section 2.

Second, we use different factorization methods to generate PM Factor and NO Factor

variables. In the baseline specification, we use the principal factor method, and as a robust-
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ness check, we use the principal-component factor method, iterated principal-factor method,

and maximum-likelihood factor method.

Third, we check whether the results of the LASSO estimation vary with the specification.

In the baseline result we use the minimum of the CV function to select λ. In the robustness

checks, we use ”one-standard-error rule” (Hastie et al., 2015); the minimum value of the BIC

function; the minimum of the BIC function where models are fit for all lambdas in the grid

until the tolerance value is reached; adaptive ridge (adaptive lasso, using the ridge estimator

to construct the initial weights in the first lasso); adaptive steps (adaptive lasso with 100

lassos); and adaptive power 1.5 (adaptive lasso, where weights are raised to the 1.5th power).

Additionally, we check alternative seeds.

3.5. Heterogeneity

In our dataset, we included many EU regions, and thus are able to present a heterogeneity

analysis. We divide the sample by the average levels of PM concentrations through the

observation period. The high pollution subsample includes NUTS-3 regions with higher

than median PM pollution levels and the low pollution subsample includes those with lower

than median levels. Next, we do the same with GDP and run the 2SLS regressions on these

subsamples. These two dimensions are somewhat correlated (ρ = −0.3), as the wealthier

regions are less polluted in general. Still, about 30% of the regions are in the ”high pollution

- high GDP” or the ”low pollution - low GDP” categories.

4. Results

4.1. Descriptive results

First, in Table 1 the descriptive statistics of the main variables are presented. The

reported statistics refer to yearly values by NUTS-3 regions, except wind speed statistics

which refer to the NUTS-2 level.

There is substantial variability in the birth rates and the pollution concentration levels

not only at the country level, but also at the regional level. This is shown by the maps in

Figures 1 and 2. The maps showing the rest of the pollutants are presented in Figures A.9

to A.17 in the Appendix.

The yearly observations reported in the Appendix (Table A.11) show that the concen-

tration of NO2 substantially decreased in the observation period, whereas the concentration

of other pollutants such as PM10 and O3 remained more or less unchanged.

Figures A.4 and A.5 in the Appendix depict the raw associations between the concen-

tration levels of each pollutant in year t and the log birth rates in year t+1 at the NUTS-3

level. The raw associations between birth rates and pollution concentrations show diverse
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Table 1: Summary statistics

Mean SD Min Max N

Birth rate 53.51 10.98 21.67 167.41 7,842
PM10 18.76 13.93 0.00 137.63 9,392
PM2.5 7.99 8.18 0.00 85.00 9,392
CO 0.17 0.27 0.00 4.23 9,392
SO2 2.70 5.14 0.00 157.44 9,392
NO2 15.96 11.94 0.00 118.20 9,392
NOx 19.80 26.04 0.00 214.39 9,392
O3 38.78 24.54 0.00 111.56 9,392
Wind speed 3.03 0.88 1.05 5.72 9,200
Heating Degree Days 2620.17 867.19 266.55 6836.56 7,456

Unit of measurement: Birth rate: numre of births per 1000 women of age 15 to 44

CO - mg/m3; other pollutants - µg/m3; Wind speed - km/h; Heating Degree Days - none

Figure 1: Average birth rate in NUTS-3 regions (2013-2020)

Data source: EUROSTAT. Birth rate: number of births per 1000 women of age 15 to 44.
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Figure 2: Average PM10 pollution in NUTS-3 regions (2013-2020)

Data source: European Environment Agency. Unit of measurement: µg/m3

nonlinear patterns, including strong negative, strong positive, roughly zero, and varying as-

sociations between birth rates and pollution concentrations. These patterns reflect not only

the direct negative effect of pollution on birth rates, but also the various indirect effects of

secondary factors such as industrial activity and economic prosperity. We provide further

descriptive figures about pollution concentrations in the Appendix; see Figure A.6 in the

Appendix on the associations between instruments and pollution concentration levels and

Figures A.7 and A.8 in the Appendix on the pollution distributions relative to the European

air quality standards.

4.2. Main results

4.2.1. OLS and 2SLS

The main results from regression equations 1, 2, 3, and the second stage results of the

2SLS regressions are reported in Table 2. In these regressions, the air pollution concentrations

are measured as the number of days when the concentration exceeds 125% of the European air

quality standards (see Table A.6 in the Appendix). The pollution variables are standardized

to have zero mean and the standard deviation equals one for easier interpretation of the

results. In the first, second, and third columns, the simple OLS regression results are reported

and suggest a moderate and significant effect of the PM Factor. The coefficients of the NO
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Factor and the SO2 are insignificant in all specifications. Nevertheless, the OLS estimates

are biased, thus we do not interpret these coefficients.

In Column 4, we report the second-stage results of the 2SLS regression. Here the point

estimate of the PM Factor is larger compared to the OLS estimate and is significant at the

1% level. The estimate shows that if the PM Factor increases by 1 standard deviation, the

birth rates decrease by 5.1% the next year and another 5.9% two years later. 1 SD difference

of the PM Factor equals approximately the difference between the PM Factor in the La

Spezia region, Northwest Italy (PM Factor = -0.72; PM10 pollution exceeded 125% of the

European air quality standards for 0 days, PM2 for 4 days, and CO for 0 days) and the

Altötting region, Bavaria, Germany (PM Factor: -0.33; Days: 15, 31, and 0 days) in 2017.

The rest of the pollutants have an insignificant or a slightly significant effect on fertility in

the 2SLS regression.

Table A.12 in the Appendix summarizes the first stage results of the 2SLS regression

presented in Table 2. The F-statistic is meaningfully large for the PM and the NO Factors,

but very low for the SO2. At the same time, for each pollutant, the Sanderson-Windmeijer

(SW) F-test statistics (Sanderson and Windmeijer, 2016) indicate that the endogenous re-

gressors are not weakly identified. These tests show that the instruments are able to capture

a meaningful part of the variation of the PM and the NO Factors. In the case of SO2, the F-

test indicates that it is weakly identified, whereas the SW F-tests suggest it is not. The SW

first-stage chi-squared statistics significantly reject the null hypotheses that the particular

endogenous regressors are unidentified. According to Table A.13 in the Appendix many of

the coefficients are significant in the first stage regression where the PM Factor (t-1) is the

dependent variable3. These results support that the instruments are good enough to capture

the variation in the pollution concentrations.

Lastly, for comparison, we run regressions which include only one pollutant at a time,

otherwise we run the exact same regressions as in Columns 3 and 4 of Table 2. The re-

sults of these regressions are reported in Table A.14 in the Appendix. As a result, nearly

all the pollutants produce a significant effect in these regressions. This striking difference

demonstrates how measuring the effect of only one pollutant may lead to biased estimations.

4.2.2. LASSO

The results of the baseline LASSO estimations are reported in Table 3. λ is selected by

using a cross-validation function, and the grid for λ is set to 10,000. The dependent variable

is log birth rate and the explanatory variables are each single air pollutants (in years t-1

3The rest of the first stage regressions are not reported here, but are available from the authors.
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Table 2: OLS and 2SLS regression estimates

(1) (2) (3) (4)
L.PM Factor -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.051∗∗∗

(0.001) (0.002) (0.002) (0.010)

L2.PM Factor -0.002 -0.002 -0.059∗∗∗

(0.002) (0.002) (0.013)

L.SO2 0.027 0.009 0.009 0.299
(0.035) (0.043) (0.043) (1.198)

L2.SO2 -0.052 -0.051 1.683
(0.038) (0.038) (1.686)

L.NO Factor -0.000 0.000 0.000 -0.005
(0.001) (0.001) (0.001) (0.011)

L2.NO Factor 0.001 0.001 0.018∗

(0.001) (0.001) (0.010)
Observations 5320 5320 5320 5320
Prob > F 0.010 0.000 0.000 0.000
Clusters 889.000 889.000 889.000 889.000
Model OLS OLS OLS 2SLS
NUTS-3 FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
NUTS-3 linear trend Yes Yes Yes Yes
Other controls No No Yes Yes

Standard errors in parentheses

Notes: Regressions based on Eq. 1, 2, 3 and 2SLS.

Dependent variable : log birth rate.

Air quality measure: number of days when the pollution concentrations

exceeded 125% of the European air quality standards, standardized

L.: first lagged values; L2.: second lagged values.

PM Factor: PM10, PM2, CO; NO Factor: NO2, NOX, O3 (Principal factor method).

Robust standard errors clustered at the NUTS-3 region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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and t-2) that we have data of (including NO, Pb, and C6H6), year fixed effects, country

fixed effects, and country linear trends. Only the results for the air pollutants are reported

in the table. Based on the absolute value of the LASSO coefficients, the first, second, and

third most important pollutants are indicated in the models. Less important pollutants

that were also kept in the model are marked with an x. The coefficients are not reported

nor interpreted here because these are subject to omitted variables bias such as the OLS

regression results. We report results for various measures of air pollution. In Column 1 we

report the LASSO results with pollution measures referring to the number of days when the

pollution exceeded 125% of the EU air quality standards (ACS 125%). In Column 2, ACS

175% is reported which indicates days with very heavy pollution concentrations. In Column

3, the pollution is measured with the number of days when the concentrations were in the

highest, 10th decile. In Column 4 the means of the pollution concentrations are used.

Table 3: LASSO results (λ selection with cross-validation)

ACS 125% ACS 175% D10 Mean
PM10 1 1 1 1
PM2.5 3 3 3 3
CO x x
NO2 x x x x
NOx 2 2 2 x
O3 x x 2
SO2 x x x x
Pb x x x x
C6H6 x x x x
NO x x

Notes: The grid for λ is set to 10,000. Seed: 1234. Dependent variable: log birth rate. Independent variables: air pollutants
(in years t-1 and t-2), year FE*, country FE*, country linear trend*. * Omitted from the Table. The rule used to select λ: CV
- minimum of the CV function. Measures of air pollution: (1) Number of days concentration exceeds 125% of the Air quality
standard, (2) Number of days concentration exceeds 175% of the Air quality standard, (3) Number of days concentration in
Decile 10, (4) Mean. Results: 1: included in the model with the highest importance (highest lasso coefficient in absolute value),
2: second, 3: third, x: included in the model with lower importance. The results of other LASSO model specifications are
reported in Tables A.15 and A.16 in the Appendix.

Among the three most important variables, PM10 and PM2.5 are included in four, NOX

is included in three, and O3 is included in one of the four models. The CO concentrations

are included in only 2 of the models which indicates that the 2SLS results on the PM Factor

are most likely driven by the PM10 and PM2.5 concentrations.

The LASSO estimates are suitable to judge the importance of the three variables that we

omitted from the OLS and the 2SLS regressions due to a low number of observations (NO,

Pb, and C6H6). These variables are either not included or are among the less important

variables in each LASSO model. This result suggests that we most likely have not excluded

any crucial pollution variables from the OLS and the 2SLS regressions.
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4.3. Robustness checks

In our first robustness check, we use various measures of air pollution concentrations, and

report the 2SLS estimation results in Table A.18 in the Appendix. In Column 1 we repeat the

results reported in Column 4 of Table 2 for comparison. Column 2 shows the point estimates

for the number of days when the pollution concentration exceeded 175% of the concentration

limits. In this specification, the SO2 variable is dropped because this pollutant never exceeds

this threshold. Column 3 shows the number of days when the pollution concentration reached

the 10th decile, and Column 4 reports the mean concentrations. These results are very similar

to the main regression results. Only the PM Factor concentrations have a significant and

negative effect on birth rates one and two years later. These results are significant at the

1% level in most specifications. NO Factor and SO2 have no significant effect on fertility.

Second, we check whether using different methods of variable reduction methods in the

factor variables could affect our results. Table A.19 in the Appendix reports the results

for various methods of factorizing. Using the principal-component factor and the iterated

principal-factor method, our results remain similar. Whereas, using the maximum likelihood

factor method, the NO Factor appears to also be an important pollutant.

Last, we check whether alternative LASSO model specifications lead to different results

than the baseline specification. We get very similar results, if we apply different methods

to select the λ parameter. Instead of using the minimum of the CV function, we use the

”one-standard-error rule” (Hastie et al., 2015); the minimum value of the BIC function;

the minimum of the BIC function where models are fit for all lambdas in the grid until

the tolerance value is reached; adaptive ridge (adaptive lasso, using the ridge estimator to

construct the initial weights in the first lasso); adaptive steps (adaptive lasso with 100 lassos);

and adaptive power 1.5 (adaptive lasso, where weights are raised to the 1.5th power). All 7 of

these specifications are combined with four air pollution measures, which gives altogether 28

LASSO models. Among the three most important variables, PM10 is included in 14, PM2.5

is included in 13, NOx is included in 11, and O3 is included in 10 of the 28 models. NO, Pb,

and C6H6 are not included among the 3 most important variables in any of these models

(see Tables A.15, A.16 and A.17 in the Appendix). We also run the LASSO models with

other seeds, and the results are very similar. The results are omitted from the article, but

are available upon request.

4.4. Heterogeneity analysis

Finally, we present a heterogeneity analysis, with the results reported in Table 4. In

the first two regressions (Columns 1 and 2) we included NUTS-3 regions of which the mean

yearly average PM10 concentrations are above or under the overall median yearly average.
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The point estimates of PM10 are not statistically different in the two groups, but the results

are more significant in the low pollution areas. The other pollutants are insignificant, similar

to the main specification (see Column 4 of Table 2).

We divide regions by GDP in a similar fashion (see Figure A.18 in the Appendix). PM10

one year ago is weakly or not significant. PM10 two years ago has a significant negative effect

in the low GDP regions, but not in the high GDP regions. This result is probably due to the

higher quality of health services or to the generally better health status of the population in

high GDP regions. Similarly to our main result, the NO Factor is not significant in either

of the two groups. However, the point estimate of SO2 in the high GDP group suggests a

large negative effect and it is highly significant.

5. Simulation

Finally, we calculate predicted birth rate differences between the actual data and a hypo-

thetical scenario with improved particulate matter pollution levels. We assume that in the

improved pollution scenario the NO Factor and SO2 concentrations remain at the original

level. We predict birth rates for each NUTS-3 region and each year, based on our main point

estimates (Column 4 of Table 2). In the simulation, we assume that particulate matter pol-

lution levels decrease such that PM10 exceeds ACS 125% at most 2 days a year and PM2.5

at most 3 days a year. We limit the pollution improvement to be at most a one standard

deviation decrease so that linear projections remain reasonable. Figure 3 shows the resulting

differences compared to the actual birth rates. These results show that in most European

regions birth rates would likely increase if the regions complied with the stricter regulations

adopted in February 2024 by the European Council (EuropeanCouncil, 2024). Eastern Eu-

ropean regions and Northern regions of Italy would likely benefit most from reducing PM10

and PM 2.5 pollution levels in terms of fertility rates.

6. Discussion

In this paper, we investigate the impact of different types of ambient pollutants on birth

rates in Europe. Estimating the causal effect presents challenges due to omitted variable

bias resulting from unaccounted pollutants and unmeasured factors. We address this by

incorporating the ten most important pollutants into our analysis and employing wind speed

and heating days as instrumental variables for pollution concentrations. Previous estimates

regarding the influence of air pollution on fertility have typically been confined to limited

geographical and temporal scopes. Our study expands upon this by examining 657 regions

across Europe and its neighboring areas, drawing from up to six years of data, thereby
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Table 4: Heterogeneity by PM10 and GDP (2SLS)

(1) (2) (3) (4)
High PM10 Low PM10 High GDP Low GDP

L.PM Factor -0.006 -0.016 -0.027∗ 0.010
(0.017) (0.010) (0.014) (0.016)

L2.PM Factor -0.028 -0.018∗∗ -0.014 -0.040∗∗

(0.017) (0.009) (0.015) (0.019)

L.NO Factor 0.013 0.009 -0.006 0.008
(0.015) (0.008) (0.012) (0.021)

L2.NO Factor -0.003 0.014 0.015 0.002
(0.016) (0.009) (0.012) (0.021)

L.SO2 -0.060∗ -0.011 -0.027 -0.025
(0.037) (0.018) (0.036) (0.029)

L2.SO2 -0.035 0.005 -0.128∗∗ -0.031
(0.037) (0.017) (0.061) (0.028)

Observations 3557 1763 2976 2344
Prob > F 0.148 0.048 0.001 0.041
Clusters 594.000 295.000 497.000 392.000
Model 2SLS 2SLS 2SLS 2SLS
NUTS-3 FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
NUTS-3 linear trend Yes Yes Yes Yes
Other controls Yes Yes Yes Yes

Standard errors in parentheses

Notes: Dependent variable : log birth rate. Pollution measure: mean.

L.: first lagged values; L2.: second lagged values.

PM Factor: PM10, PM2, CO; NO Factor: NO2, NOX, O3 (Principal factor method).

Robust standard errors clustered at the NUTS-3 region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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enhancing the external validity of our findings. Our results remain robust across various

specifications and robustness tests.

We find that it is the particulate matter concentrations, specifically PM2.5 and PM10

that have a significant effect on birth rates. After controlling for these effects, the rest of the

pollutants are found to exert an insignificant effect on fertility. The PM Factor coefficient is

significant at the 1% level, and it suggests that an increase by 1 SD would result in a 5.1%

drop in birth rates the next year and 5.9% two years later. These results are robust across

various specifications. The effects of other pollutants on birth rates are insignificant in most

specifications.

Figure 3: Predicted birth rate growth (%) as a result of a substantial decrease in particulate matter pollution

Notes: Linear prediction of birth rate changes if PM10 exceeds ACS 125% at most 2 days
per year and PM2.5 at most 3 days a year. (Assuming at most one standard deviation
decrease so that linear projections remain reasonable.)

Our heterogeneity analysis shows that air pollution concentrations have a much larger

effect in NUTS-3 regions with lower GDP levels.

Our results are comparable to previous results in the literature in terms of the effects

of PM10 and PM2.5. We find similarly strong negative effects for live births as the studies

reported by Frutos et al. (2015). However, according to our results, the other pollutants

such as NOx, NO2, and SO2 play a much smaller role in shaping birth rates across European

regions. These results are similar to the results of previous multi-pollutant studies on birth

18



rates, for instance Nieuwenhuijsen et al. (2014), who find that PMcoarse (PM larger than

2.5 but smaller than 10µg/m3) drives the fertility effects when NOx, NO2, PM2.5, PM10 and

PMcoarse are jointly included in the regressions.

We add to the previous multi-pollutant literature by extending the analysis from one

region or country and (or) a short time period to the whole European region and 6 years,

and show that the results previously found hold to a multitude of regions and years.

Our findings hold significance for governments striving to address air pollution amidst

resource constraints. They indicate that environmental policies could synergize with popula-

tion policies, such as government investments in child benefits. Therefore, policymakers can

enhance the efficiency of expenditure structures by considering these complementary effects.
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A1. Supplementary tables and figures

Table A.5: Number of data points before and after aggregating.

Raw data Data after aggregating
by station by station by nuts3 by nuts3

Pollutant hour day day year
C6H6 31 256 798 224 539 754 028 2 542
CO 72 715 222 10 248 1 331 598 3 866
NO 142 830 222 7 672 1 771 263 5 058
NO2 231 221 335 52 483 2 742 982 7 749
NOX as NO2 136 133 784 10 460 1 988 002 5 688
O3 163 347 466 2 190 2 510 812 7 098
Pb in PM10 26 739 1 047 140 474 413 2 225
PM10 150 259 482 3 542 713 2 718 911 7 731
PM2.5 71 888 620 1 656 595 1 893 156 5 590
SO2 122 923 200 66 823 1 847 375 5 319

Table A.6: EU air quality standards

Pollutant Concentration limit (CL) Averaging period
Fine particles (PM2.5) 20 µg/m3 1 year
Sulphur dioxide (SO2) 125 µg/m3 24 hours
Nitrogen dioxide (NO2) 40 µg/m3 1 year
Particulate matter (PM10) 50 µg/m3 24 hours
Lead (Pb) 0.5 µg/m3 1 Year
Carbon monoxide (CO) 10 mg/m3 Maximum daily 8 hour mean
Benzene (C6H6) 5 µg/m3 1 year
Ozone (O3) 120 µg/m3 Maximum daily 8 hour mean

Note: EU air quality standards according to the Directive 2008/50/EC of the European
Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for
Europe.
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Table A.7: Number of pollution observations by country tab:means by year}

Country PM10 SO2 O3 NO2 NOx CO C6H6 NO Pb PM2.5

Albania 20 28 31 31 31 32 28 0 0 21
Andorra 7 7 7 7 7 7 0 7 0 0
Austria 264 213 268 264 79 113 37 254 10 159
Belgium 210 162 220 239 28 97 166 0 114 212
Bulgaria 176 144 109 120 7 93 86 120 52 62
Croatia 70 43 81 74 73 28 24 0 14 65
Cyprus 8 8 8 8 8 8 8 0 8 8
Czechia 112 106 112 112 110 80 9 112 94 112
Denmark 32 27 47 47 41 34 8 47 15 30
Estonia 32 39 40 39 40 32 24 0 32 40
Finland 124 54 86 99 97 15 7 57 1 76
France 742 327 750 732 188 165 78 636 26 612
Germany 1685 794 1475 1683 1545 572 274 1710 418 1074
Greece 90 54 70 71 5 44 28 72 8 46
Hungary 100 96 80 96 88 90 66 0 26 53
Iceland 13 14 2 14 13 1 0 14 0 14
Ireland 58 43 57 50 50 27 17 0 0 48
Italy 795 582 757 797 387 663 626 219 366 719
Kosovo 7 6 7 5 5 6 0 3 0 7
Latvia 32 32 40 32 6 11 26 10 0 23
Lithuania 48 47 64 55 55 40 17 0 0 27
Luxembourg 8 8 8 8 7 8 8 8 2 8
Malta 16 16 16 16 7 16 13 16 10 16
Montenegro 8 8 8 8 8 8 0 8 0 1
Netherlands 201 78 202 213 213 39 25 213 6 138
North Macedonia 52 53 52 45 45 52 2 47 0 5
Norway 107 65 70 110 98 11 0 98 0 81
Poland 572 522 450 535 530 391 291 134 449 443
Portugal 142 94 141 141 140 49 23 139 7 97
Romania 257 281 274 270 37 279 188 0 164 124
Serbia 35 65 31 58 57 90 2 57 14 1
Slovakia 64 63 56 64 64 64 64 0 30 61
Slovenia 78 33 64 64 57 24 16 0 36 28
Spain 414 415 418 418 418 347 303 418 304 369
Sweden 152 50 104 112 55 20 16 13 0 83
Switzerland 68 42 68 68 68 42 17 68 0 42
Turkey 477 477 236 261 260 195 0 0 0 183
United Kingdom 425 187 486 657 656 49 33 573 17 453
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Table A.8: Number of yearly NUTS-3 level observations by country

Country Birth rate per 1000
females (15-44)

Wind HDD

Albania 35 40 0
Andorra 0 0 0
Austria 245 280 280
Belgium 232 264 272
Bulgaria 154 176 176
Croatia 83 104 104
Cyprus 7 8 8
Czechia 98 112 112
Denmark 42 48 48
Estonia 33 40 40
Finland 126 144 144
France 686 744 744
Germany 1799 2048 2056
Greece 140 160 160
Hungary 105 120 120
Iceland 14 16 0
Ireland 56 64 64
Italy 748 864 864
Kosovo 0 0 0
Latvia 35 40 40
Lithuania 56 64 64
Luxembourg 7 8 8
Malta 14 0 16
Montenegro 7 8 0
Netherlands 203 232 232
North Macedonia 49 56 0
Norway 94 128 120
Poland 511 584 584
Portugal 140 152 144
Romania 294 336 336
Serbia 56 112 0
Slovakia 56 64 64
Slovenia 70 80 80
Spain 357 416 408
Sweden 147 168 168
Switzerland 70 80 0
Turkey 560 640 0
United Kingdom 513 800 0
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Table A.9: Correlation matrix of the pollution variables

PM10 PM2.5 CO SO2 NO2 NOx O3

PM10 1.00
PM2.5 0.81 1.00
CO 0.68 0.59 1.00
SO2 0.66 0.54 0.55 1.00
NO2 0.49 0.40 0.45 0.35 1.00
NOx 0.26 0.26 0.26 0.12 0.74 1.00
O3 -0.35 -0.34 -0.25 -0.21 -0.53 -0.49 1.00

Table A.10: Factor loadings of PM Factor and NO Factor

PF PCF IPF ML
PM Factor
PM10 0.718 0.903 0.798 0.632
PM2 0.718 0.903 0.799 1.000
CO 0.008 0.017 0.008 0.019
NO Factor
NO2 0.141 0.745 0.218 1.000
NOx 0.127 0.670 0.189 0.000
O3 -0.033 -0.178 -0.037 0.000

Note: PF: Principal factor; PCF: Principal-component factor; IPF: Iterated principal factor;
ML: Maximum-likelihood factor. Pollution measurement method: ACS 125% - number of
days when the pollution exceeded 125% of the European air quality standard.

Table A.11: Mean pollution concentrations by year

PM10 SO2 O3 NO2 NOx CO C6H6 NO Pb PM2.5

2013 23.205 4.410 52.131 21.254 37.182 0.405 1.319 11.615 0.018 15.175
2014 22.201 4.434 48.850 20.439 36.653 0.396 1.199 12.353 0.036 14.297
2015 25.060 5.456 52.530 20.808 37.008 0.441 1.233 13.022 0.031 14.359
2016 23.470 4.986 49.529 20.613 34.374 0.432 1.235 13.309 0.016 13.624
2017 23.509 4.851 52.107 20.293 31.545 0.417 1.206 12.072 0.015 13.684
2018 23.322 4.923 54.571 19.321 32.642 0.418 1.158 10.213 0.024 13.785
2019 21.441 4.649 54.268 18.914 32.247 0.406 0.997 9.604 0.014 12.196
2020 20.723 4.561 52.312 15.916 26.336 0.409 0.940 7.580 0.018 11.870
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Table A.12: First stage results of the 2SLS regressions

Variable F(42, 888) P-val SW Chi-sq(37) P-val SW F(37, 888) P-val

L.PM Factor 4.150 0.000 157.940 0.000 3.510 0.000
L2.PM Factor 3.350 0.000 100.090 0.000 2.230 0.000
L.SO2 0.060 1.000 82.000 0.000 1.820 0.002
L2.SO2 0.060 1.000 75.100 0.000 1.670 0.008
L.NO Factor 1.580 0.012 94.020 0.000 2.090 0.000
L2.NO Factor 1.630 0.008 81.730 0.000 1.820 0.002

Notes: These statistics are reported from Eq. 4.
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Table A.13: First stage results (Eq.4) with PM Factor (t-1) as the dependent variable

Dep. var.: PM Factor (t-1) Coefficient Robust SE t P > t 95% Conf int
WS (t-1) 11.103 3.933 2.820 0.005 3.392 18.813
WS2 (t-1) -3.305 1.268 -2.610 0.009 -5.790 -0.819
WS3 (t-1) 0.357 0.133 2.680 0.007 0.095 0.618
HDD (t-1) 0.004 0.002 1.550 0.122 -0.001 0.008
HDD2 (t-1) 0.000 0.000 0.370 0.709 0.000 0.000
HDD3 (t-1) 0.000 0.000 -0.580 0.565 0.000 0.000
HDD ×WS (t-1) -0.003 0.001 -2.520 0.012 -0.006 -0.001
HDD ×WS2 (t-1) 0.001 0.000 2.910 0.004 0.000 0.002
HDD2 ×WS (t-1) 0.000 0.000 -0.220 0.822 0.000 0.000
HDD ×WS3 (t-1) 0.000 0.000 -3.150 0.002 0.000 0.000
HDD3 ×WS (t-1) 0.000 0.000 0.280 0.781 0.000 0.000
Days(WS > 8km/h) (t-1) 0.018 0.010 1.800 0.072 -0.002 0.037
Days(WS > 7km/h) (t-1) -0.004 0.006 -0.590 0.558 -0.016 0.009
Days(WS > 6km/h) (t-1) 0.000 0.004 -0.090 0.929 -0.008 0.007
Days(WS > 5km/h) (t-1) -0.005 0.004 -1.360 0.173 -0.012 0.002
Days(WS > 4km/h) (t-1) -0.008 0.004 -2.130 0.033 -0.015 -0.001
Days(WS > 8km/h)2 (t-1) -0.001 0.000 -2.300 0.022 -0.001 0.000
Days(WS > 7km/h)2 (t-1) 0.000 0.000 0.980 0.326 0.000 0.000
Days(WS > 6km/h)2 (t-1) 0.000 0.000 -0.800 0.424 0.000 0.000
Days(WS > 5km/h)2 (t-1) 0.000 0.000 1.210 0.226 0.000 0.000
Days(WS > 4km/h)2 (t-1) 0.000 0.000 1.550 0.122 0.000 0.000
WS (t-2) -0.312 3.164 -0.100 0.921 -6.515 5.891
WS2 (t-2) -0.960 1.094 -0.880 0.380 -3.104 1.185
WS3 (t-2) 0.193 0.122 1.580 0.114 -0.046 0.432
HDD (t-2) -0.003 0.002 -1.670 0.096 -0.006 0.001
HDD2 (t-2) 0.000 0.000 0.740 0.462 0.000 0.000
HDD3 (t-2) 0.000 0.000 -0.280 0.777 0.000 0.000
HDD ×WS (t-2) 0.000 0.001 0.360 0.717 -0.002 0.002
HDD ×WS2 (t-2) 0.000 0.000 0.850 0.394 0.000 0.001
HDD2 ×WS (t-2) 0.000 0.000 -0.220 0.826 0.000 0.000
HDD ×WS3 (t-2) 0.000 0.000 -1.580 0.113 0.000 0.000
HDD3 ×WS (t-2) 0.000 0.000 -0.140 0.888 0.000 0.000
Days(WS > 8km/h) (t-2) 0.015 0.007 1.990 0.047 0.000 0.029
Days(WS > 7km/h) (t-2) -0.005 0.006 -0.840 0.403 -0.018 0.007
Days(WS > 6km/h) (t-2) -0.003 0.004 -0.700 0.481 -0.011 0.005
Days(WS > 5km/h) (t-2) 0.005 0.003 1.510 0.130 -0.002 0.012
Days(WS > 4km/h) (t-2) 0.001 0.003 0.370 0.715 -0.005 0.008
Days(WS > 8km/h)2 (t-2) -0.001 0.000 -2.320 0.021 -0.001 0.000
Days(WS > 7km/h)2 (t-2) 0.000 0.000 1.170 0.244 0.000 0.000
Days(WS > 6km/h)2 (t-2) 0.000 0.000 -0.520 0.606 0.000 0.000
Days(WS > 5km/h)2 (t-2) 0.000 0.000 -0.210 0.835 0.000 0.000
Days(WS > 4km/h)2 (t-2) 0.000 0.000 -0.540 0.589 0.000 0.000
GDP 0.000 0.000 -0.370 0.709 0.000 0.000
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Table A.14: OLS and 2SLS regression results: including only one pollutant at a time

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

PM10 (t-1) -0.000 -0.005***
[0.001] [0.001]

PM10 (t-2) 0.000* -0.002**
[0.000] [0.001]

PM2 (t-1) -0.000 -0.005***
[0.000] [0.001]

PM2 (t-2) 0.000 -0.003**
[0.000] [0.001]

CO (t-1) 0.006 -0.027
[0.005] [0.029]

CO (t-2) 0.009* -0.028
[0.005] [0.024]

SO2 (t-1) 0.000 -0.011***
[0.001] [0.004]

SO2 (t-2) 0.000 -0.009**
[0.000] [0.004]

O3 (t-1) 0.000 -0.001*
[0.000] [0.000]

O3 (t-2) 0.000* 0.001**
[0.000] [0.000]

NO2 (t-1) -0.001* -0.005***
[0.000] [0.001]

NO2 (t-2) 0.000 -0.000
[0.000] [0.001]

NOx (t-1) 0.000 -0.000
[0.000] [0.000]

NOx (t-2) 0.000** 0.002***
[0.000] [0.001]

Constant -3.128*** -3.121*** -3.006*** -3.077*** -3.092*** -3.097*** -3.033***
[0.060] [0.075] [0.094] [0.079] [0.061] [0.057] [0.075]

NUTS-3 FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES YES YES
NUTS-3 linear trend YES YES YES YES YES YES YES YES YES YES YES YES YES YES

Observations 3,933 3,933 2,763 2,763 1,974 1,974 2,602 2,602 3,638 3,638 3,827 3,827 2,443 2,443
F test 3.80e-05 0 0.0337 0.000108 0.000932 0.00355 0.00276 0.000248 0.00134 0.00 3.32e-05 1.43e-08 0.000853 3.73e-05

Note: *** p < 0.01, ** p < 0.05, * p < 0.1, clustered, robust standard errors are in brackets.
In the OLS regressions we use Eq. 3, in the 2SLS regressions we use Eqs. 4 and 5. The dependent variable is log birth rate,
and only one type of pollutant is included in the regressions at a time.
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Table A.15: LASSO results with λ selection methods of cross-validation and BIC

CV CV SE Rule BIC BIC All Lambdas
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

PM10 1 1 1 1 1
PM2 3 3 3 3 1 1 2 2 x 3
CO x x 1 2 1 x 2
NO2 x x x x
NOx 2 2 2 x 1 3
O3 x x 2 1 1 1 1
SO2 x x x x x 3 x 2
Pb x x x x
C6H6 x x x x
NO x x
Notes: The grid for λ is set to 10,000. Seed: 1234. Dependent variable: log birth rate. Independent variables: air pollutants
(in years t-1 and t-2), year FE*, country FE*, country linear trend*. * Omitted from the Table. The rule used to select λ: CV
- minimum of the CV function; CV SE Rule - ”one-standard-error rule” (Hastie et al., 2015); BIC - minimum BIC function
value; BIC All Lambdas - minimum of the BIC function, models are fit for all lambdas in the grid until the tolerance value is
reached. Measures of air pollution: (1) ACS 125% (2), ACS 175%, (3) Decile 10, (4) Mean. Results: 1: included in the model
with the highest importance (highest lasso coefficient in absolute value); 2: second; 3: third; x: included in the model with
lower importance.
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Table A.16: LASSO results with adaptive λ selection methods

Adaptive Ridge Adaptive Steps (100) Adaptive Power 1.5
(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

PM10 1 1 1 1 1 1 1 1 2
PM2 3 x x 3 3 x x 3
CO x x x
NO2 x x 3 x
NOx 2 2 2 x 2 2 2 x
O3 3 2 1 3 1
SO2 x x x x x x
Pb x x
C6H6 x x x
NO
Notes: The grid for λ is set to 10,000. Seed: 1234. Dependent variable: log birth rate. Independent variables: air pollutants
(in years t-1 and t-2), year FE*, country FE*, country linear trend*. * Omitted from the Table. The rule used to select λ:
Adaptive Ridge - adaptive lasso, using the ridge estimator to construct the initial weights in the first lasso; Adaptive Steps
(100) - adaptive lasso with 100 lassos; adaptive Power 1.5 - adaptive lasso, weights are raised to the 1.5th power. Measures
of air pollution: (1) ACS 125%; (2) ACS 175%; (3) Decile 10; (4) Mean. Results: 1: included in the model with the highest
importance (highest lasso coefficient in absolute value); 2: second; 3: third; x: included in the model with lower importance.

Table A.17: LASSO results summary

Among the first 3
most important

Among the less im-
portant

Included in the
model

PM10 14 0 14
PM2 13 5 18
CO 4 6 10
NO2 1 7 8
NOx 11 3 14
O3 10 2 12
SO2 2 12 14
Pb 0 6 6
C6H6 0 7 7
NO 0 2 2

Notes: 3 most important: 1, 2, and 3 in Tables A.15 and A.16. Less important: x in Tables A.15 and A.16.
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Table A.18: Instrumental variables estimates for various measures of ambient pollution

(1) (2) (3) (4)
ACS: 125% ACS: 175% D10 Mean

L.PM Factor -0.051∗∗∗ -0.025∗∗∗ -0.052∗∗∗ -0.035∗∗

(0.010) (0.015) (0.014) (0.008)

L2.PM Factor -0.059∗∗∗ -0.032∗∗∗ -0.057∗∗∗ -0.047∗∗∗

(0.013) (0.008) (0.013) (0.015)

L.NO Factor -0.005 0.003 -0.019 -0.000
(0.011) (0.009) (0.017) (0.012)

L2.NO Factor 0.018∗ 0.008 0.016 0.007
(0.010) (0.009) (0.016) (0.014)

L.SO2 0.299 0.009 -0.014
(1.198) (0.017) (0.026)

L2.SO2 1.683 -0.047∗∗ -0.056∗

(1.686) (0.023) (0.032)
Observations 5320 5320 5320 5320
Prob > F 0.000 0.000 0.000 0.001
Clusters 889.000 889.000 889.000 889.000
Model 2SLS 2SLS 2SLS 2SLS
NUTS-3 FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
NUTS-3 linear trend Yes Yes Yes Yes
Other controls Yes Yes Yes Yes

Standard errors in parentheses

Notes: Dependent variable : log birth rate. ACS: European air quality standard.

L.: first lagged values; L2.: second lagged values.

PM Factor: PM10, PM2.5, CO; NO Factor: NO2, NOX, O3 (Principal factor method).

Robust standard errors clustered at the NUTS-3 region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.19: Instrumental variables estimates for various methods of factorizing

(1) (2) (3) (4)
PF PCF IPF ML

L.PM Factor -0.051∗∗∗ -0.051∗∗∗ -0.051∗∗∗ -0.040∗∗∗

(0.010) (0.010) (0.010) (0.011)

L2.PM Factor -0.059∗∗∗ -0.059∗∗∗ -0.059∗∗∗ -0.045∗∗∗

(0.013) (0.013) (0.013) (0.012)

L.NO Factor -0.005 -0.006 -0.006 -0.046∗∗

(0.011) (0.011) (0.011) (0.022)

L2.NO Factor 0.018∗ 0.018∗ 0.018∗ -0.039∗∗

(0.010) (0.010) (0.010) (0.019)

L.SO2 0.299 0.283 0.302 0.471
(1.198) (1.193) (1.197) (1.199)

L2.SO2 1.683 1.660 1.680 1.504
(1.686) (1.673) (1.686) (1.548)

Observations 5320 5320 5320 5320
Prob > F 0.000 0.000 0.000 0.000
Clusters 889.000 889.000 889.000 889.000
Model 2SLS 2SLS 2SLS 2SLS
NUTS-3 FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
NUTS-3 linear trend Yes Yes Yes Yes
Other controls Yes Yes Yes Yes

Standard errors in parentheses

Notes: Dependent variable : log birth rate.

L.: first lagged values; L2.: second lagged values.

PM Factor: PM10, PM2.5, CO; NO Factor: NO2, NOX, O3

Methods of variable reduction in the Factor variables(1) Principal factor method

(2) Principal-component factor method

(3) Iterated principal-factor method (4) Maximum-likelihood factor method

Air pollution measure: number of days when the concentrations exceeded the 125% of the air quality standards.

Robust standard errors clustered at the NUTS-3 region level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.20: Number of NUTS-3 - year observations by country in the regressions

Freq. Percent Cumulative
Austria 6 0.625 0.625
Belgium 5 0.521 1.146
Croatia 3 0.312 1.458
Cyprus 6 0.625 2.083
Czechia 54 5.625 7.708
Denmark 10 1.042 8.750
Estonia 12 1.250 10
Finland 5 0.521 10.52
France 10 1.042 11.56
Germany 175 18.23 29.79
Greece 224 23.33 53.12
Hungary 29 3.021 56.15
Ireland 11 1.146 57.29
Italy 88 9.167 66.46
Lithuania 18 1.875 68.33
Luxembourg 5 0.521 68.85
Netherlands 14 1.458 70.31
Poland 209 21.77 92.08
Portugal 22 2.292 94.38
Romania 5 0.521 94.90
Slovakia 37 3.854 98.75
Slovenia 6 0.625 99.38
Sweden 6 0.625 100
Total 960 100
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Figure A.4: Average pollution concentrations (in year t) and log birth rates (in year t+1)
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Data source: EUROSTAT and European Environment Agency. Each point denotes a NUTS-
3 region.
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Figure A.5: Average pollution concentrations (in year t) and log birth rates (in year t+1)
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Data source: EUROSTAT and European Environment Agency. Each point denotes a NUTS-
3 region.
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Figure A.6: Instruments and average pollution concentrations
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Figure A.7: Histograms of pollution concentrations with European health standard limits (2022)
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Figure A.8: Histograms of pollution concentrations with European health standard limits (2022)
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Figure A.9: The average PM2.5 pollution in NUTS-3 regions

Figure A.10: The average CO pollution in NUTS-3 regions
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Figure A.11: The average NO2 pollution in NUTS-3 regions

Figure A.12: The average NOx pollution in NUTS-3 regions
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Figure A.13: The average O3 pollution in NUTS-3 regions

Figure A.14: The average SO2 pollution in NUTS-3 regions
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Figure A.15: The average Pb pollution in NUTS-3 regions

Figure A.16: The average C6H6 pollution in NUTS-3 regions
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Figure A.17: The average NO pollution in NUTS-3 regions

Figure A.18: NUTS-3 regions above and below median GDP
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